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Modern data is high-dimensional, large scale

Leads to problems in analysis & inference (curse of dimensionality)
and storage & processing

Can be helped by dimensionality reduction, feature selection and
compression, quantization
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Structure in Data

High-dimensional data doesn’t typically look like this
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Structure in Data

It could look like this...

K. Hamm Linear Dim. Reduction November 23, 2022 4 / 43



Structure in Data

or this ...
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Structure in Data

or maybe this ...
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Structure in Data

or what about this?
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Structure in Data

Or it could be this ...
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Structure in Data

or even this!
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Structure in Data

The Point: High-dimensional data often exhibits some underlying
structure, which may often be low-dimensional

Question: So what does this mean for us?

Two Tasks:
Detection (find when a given structure exists)
Learning (learn the features necessary to describe the structure –
e.g., basis for subspace or charts/tangent spaces for manifold)
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Common Structures:
Subspaces
Union of subspaces
Sparsity
Manifolds
Union of manifolds
Clusters (Communities)
Structure + noise/outliers
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Common Data Science/Machine Learning Tasks:

Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)
Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)
Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)
Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)

K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Common Data Science/Machine Learning Tasks:
Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)

Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)
Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)
Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)

K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Common Data Science/Machine Learning Tasks:
Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)
Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)

Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)
Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)

K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Common Data Science/Machine Learning Tasks:
Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)
Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)
Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)
Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)

K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Common Data Science/Machine Learning Tasks:
Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)
Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)
Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)

Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)

K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Common Data Science/Machine Learning Tasks:
Feature Selection:

f (x1, . . . , xN) ≈ f̃ (xi1 , . . . , xid ), d ≪ N

(e.g., weather modeling)
Dimensionality Reduction:

ϕ : RD → Rd , d ≪ D

(e.g., compression, visualization)
Manifold Learning (e.g., imaging)

M ≈
⋃

Si

Clustering/Community Detection

X = {x1, . . . xN} = C1 ⊔ · · · ⊔ Ck

(e.g., hand-written digits, facial recognition)
Classification

(xi , yi) ⇒ CΘ : RD → {1, . . . ,L}
(e.g., hand-written digits, facial recognition with labelled training
data)K. Hamm Linear Dim. Reduction November 23, 2022 12 / 43



Structure in Data

Techniques:
Graphs
(Randomized) Linear Algebra
Harmonic Analysis
Statistics
Optimization
Neural Networks
Topological invariants
· · ·
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Dimensionality Reduction

Given: X = {x1, . . . , xN} ⊂ RD with some known/expected structure
Goal: Find “nice" ϕ : RD → Rd

How do we choose ϕ?
Task dependent

Preserve cluster structure / make separation easier
Preserve distance/metric / geometric structure
Preserve linear algebraic structure
Find a reduced basis
Fine low-dimensional parametrization
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Notations

A ∈ Rm×n – data matrix (columns are data)

For x ∈ Rn, |x | will be its Euclidean norm

∥A∥2 := sup
x∈Rn,|x |=1

|Ax | (spectral norm)

∥A∥F :=
(∑n

i,j=1 |Aij |2
) 1

2 (Frobenius norm)

A(i , :) is the i–th column of A and A(:, j) is its j–th row. A(I, J) is a
submatrix of entries (i , j) ∈ I × J
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Background: Singular Value Decomposition

Every A ∈ Rm×n has a SVD of the form

A = UΣV T =

 | |
u1 . . . um
| |

Σ

— v1 —
...

— vn —


where U ∈ Rm×m and V ∈ Rn×n are orthogonal (U−1 = UT ) and

Σ =
[
diag(σ1, . . . , σm) 0

]
, or

[
diag(σ1, . . . , σn)

0

]
if m < n or m > n, respectively.

σ2
i = λi(AAT ) = λi(AT A), and are ordered σ1 ≥ σ2 ≥ · · · ≥ σrank(A) ≥ 0.
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SVD Properties

Can be rewritten:

A =

min{m,n}∑
i=1

σiuivT
i

If rank(A) = k < m,n, then we also have

A = UkΣkV T
k =

 | |
u1 . . . uk
| |


σ1

. . .
σk


— v1 —

...
— vk —


=

k∑
i=1

σiuivT
i
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SVD Properties

Theorem (Eckart–Young–Mirsky)

Let k ∈ N and A ∈ Rm×n. Then Ak := UkΣkV T
k is a solution of

min
B:rank(B)≤k

∥A − B∥2

(Also true for any Schatten p–norm including Frobenius norm)

Note: ∥A∥2 = σ1(A), and ∥A∥F =
(∑rank(A)

i=1 σi(A)2
) 1

2

If 2 is replaced by p ∈ [1,∞] these are the family of Schatten p–norms.
Unfortunately, ∥ · ∥2 is the Schatten ∞–norm and Frobenius norm is
the Schatten 2–norm
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PCA

Given: data matrix A ∈ Rm×n (columns are data points)

Step 1 – Centering:

Âij := Aij − ui , where ui :=
1
n

n∑
j=1

Aij .

Step 2 – Compute the Covariance Matrix:

Sij :=
1

n − 1
(ÂÂT )ij =

1
n − 1

〈
Âi:, Âj:

〉
=

1
n − 1

n∑
k=1

(Aik − ui)(Ajk − uj)

=: Covar(Ai:,Aj:).

Note: Sii =
1

n−1
∑n

k=1(Aik − µi)
2 = Var(Ai:)
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Âi:, Âj:
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Âij := Aij − ui , where ui :=
1
n

n∑
j=1

Aij .

Step 2 – Compute the Covariance Matrix:

Sij :=
1

n − 1
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Âi:, Âj:
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PCA

Step 3 – Compute the spectral decomposition of S: S = UΛUT

Columns of U are called the Principal Components of Â

Columns of U are an orthonormal basis for Col(A), and directions
correspond to decreasing directions of variance in the data

Note: Typically, we ask only for the first few principal components;
Eckhart–Young–Mirsky implies that UkΛkUT

k is the best rank k
approximation of S
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Computational Note: U are the left singular vectors of 1√
n−1

Â, so
instead of forming the covariance matrix S, we simply take the SVD of

1√
n−1

Â

Further Reading: https://www.cs.princeton.edu/picasso/
mats/PCA-Tutorial-Intuition_jp.pdf
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Effect of Centering

PCA on centered data (left) and the same uncentered data (right)
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Applications of PCA

Dimensionality Reduction: Given A ∈ Rm×n, PCA gives us a map from
Rm → Rk

UT
k Â ∈ Rk×n

embedding data into a lower dimensional space (Rk )
Why?

Storage (data compression)
Identify low-dimensional patterns in data
Visualization (k = 2,3)
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k Â ∈ Rk×n

embedding data into a lower dimensional space (Rk )
Why?

Storage (data compression)

Identify low-dimensional patterns in data
Visualization (k = 2,3)

K. Hamm Linear Dim. Reduction November 23, 2022 23 / 43



Applications of PCA

Dimensionality Reduction: Given A ∈ Rm×n, PCA gives us a map from
Rm → Rk

UT
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Example

Wisconsin Breast Cancer Dataset https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
A ∈ R32×569

(Left) Projection onto first two principal components; (Right) Projection
onto first and third principal components. Red points are malignant,
Green are benign
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Interpretability

PCA can fail to give interpretable results.

Example: A ∈ Rm×n consists of m gene expression levels for n
patients. PCA represents A in terms of singular vectors, which are
linear combinations of genes (the canonical basis vectors)

a.k.a. What is an eigengene? [M. Mahoney and P. Drineas, CUR
Matrix Decompositions for Improved Data Analysis, Proceedings of the
National Academy of Science, 2009]

Maybe we should look further for a basis for A that is interpretable
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Column Subset Selection: Background

Given A ∈ Rm×n, its Moore–Penrose pseudoinverse is the unique
matrix A† ∈ Rn×n such that

AA†A = A
A†AA† = A†

AA† is symmetric
A†A is symmetric

If A = UΣV T , then
A† = VΣ†UT

where Σ† has entries
1
σ1

, . . . ,
1

σrank(A)
along its diagonal.

AA† : Rm → Rm is the orthogonal projection onto the Col(A)

A†A : Rn → Rn is the orthogonal projection onto Row(A)
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Column Subset Selection

Column Subset Selection Problem (CSSP)
Given A ∈ Rm×n and k < n, find the column submatrix C = [ai1 . . . aik ]
which minimizes

∥A − CC†A∥2

Note: C†A is a solution to m
X

in ∥A − CX∥ = C†A, where ∥ · ∥ is the 2 or

Frobenius norm.

Interpretation: Which columns of A are the most representative of the
data?

Issue: CSSP is NP–hard [Shitov, ’17]
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Column Subset Selection: Applications

Using actual columns of the data gives an interpretable representation

Can capture multiple directions of variability

[Sorensen–Embree, SICOMP ’16] Red vectors are Principal
Coordinates, Blue vectors are the columns of CC† for a certain column
submatrix
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How?

Random Sampling Methods I: Sample w/ or w/out replacement from
some distribution over the column indices

Uniform: pi :=
1
n

Column Length: pi =
|A(:, i)|2

∥A∥2
F

Leverage Scores: p(k)
i :=

1
k
|Vk (i , :)|2

Random Sampling Methods II: Bernoulli trials on each column
Typically Column Length – requires rescaling columns in the
reconstruction phase

Deterministic Sampling Methods:

Discrete Empirical Interpolation Method (DEIM) [Gu–Eisenstat,
SICOMP ’96, Sorensen–Embree, SICOMP ’16]
Greedy Column Selectin [Avron–Boutsidis, SIMAX ’13]
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Tradeoffs:
Computational Complexity: Leverage ≫ Col Length ≫ Uniform

Guarantees: Leverage Scores > Col Length > Uniform

Exception: If A has incoherent columns, Uniform sampling works very
well [Chiu–Demanet, SIMAX ’13]

Dimensionality Reduction: C = UdΣdV T
d ⇒ UT

d A ∈ Rd×N
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Problem 2: Preserve distance structure of data while significantly
reducing the dimension

Given X = {x1, . . . , xN} ⊂ RD find Φ : RD → Rd with d ≪ D such that

|xi − xj | = |Φ(xi)− Φ(xj)|

Relaxation: Given ε > 0, find Φ such that

(1 − ε)|xi − xj |2 ≤ |Φ(xi)− Φ(xj)|2 ≤ (1 + ε)|xi − xj |2 (1)

Note: If Q orthogonal and t ∈ RD, then

|(Qxi − t)− (Qxj − t)| = |Q(xi − xj)| = |xi − xj |.
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Solution 1: Johnson–Lindenstrauss Embeddings
If Φ is linear, then equation reduces to

(1 − ε)|y |2 ≤ |Φy |2 ≤ (1 + ε)|y |2, y ∈ E = {xi − xj}.

Do such matrices Φ exist?

Theorem (Johnson–Lindenstrauss Lemma)

Let ε ∈ (0,1) and {xi}N
i=1 ⊂ RD be arbitrary. Let d ≥ Cε−2 log(N).

Then there exists Φ : RD → Rd such that the above holds.

Theorem
Let x ∈ RD be fixed. Let Φ ∈ Rd×D be a matrix whose entries are i.i.d.
Gaussian (N (0, 1

d )). Then

P

[
(1 − ε)|x |2 ≤ |Φx |2 ≤ (1 + ε)|x |2

]
≥ 1 − 2e−(ε2−ε3)d/4.

Corollary
Gaussian matrices satisfy the Johnson–Lindenstrauss Lemma with
high probability.
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Solution 2: Multi-dimensional Scaling (MDS)

Given: Pairwise distance matrix DX
ij = |xi − xj | for a set of points

X = {x1, . . . , xN} ⊂ Rn (Note: we do not necessarily have to observe X
itself!)

Goal: Find Y = {y1, . . . , yN} ⊂ Rd with d ≪ n such that
|yi − yj | ≈ |xi − xj |

General Formulation: Given a similarity measure f : Rd × Rd → R, find
Y ⊂ Rd which minimizes

L(f ,DX , y1, . . . , yN) :=

(∑
i,j(f (yi , yj)− DX

ij )
2∑

i,j(D
X
ij )

2

) 1
2
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MDS

The Classical MDS algorithm is a bit simpler: it minimizes

Strain(y1, . . . , yN) :=

(∑
i,j(Bij −

〈
yi , yj

〉
)2∑

i,j B2
i,j

) 1
2

where B is an auxiliary matrix defined by

B = −1
2

J(DX )(2)J, J := I − 1
N
11

T

where
(DX )

(2)
ij = (DX

ij )
2 = |xi − xj |2

B is a “double centering" of the distance matrix
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MDS

Definition
A matrix D ∈ RN×N is a distance matrix provided

D = DT ,
Dii = 0 for all i
Dij ≥ 0 for all i ̸= j

Definition
A distance matrix D ∈ RN×N is Euclidean if there exists a set
{x1, . . . , xN} in Rd for some d such that Dij = |xi − xj |.

Note the notion of a distance matrix is much more general. We will
characterize when a distance matrix is Euclidean.
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MDS

Theorem (Householder–Young, ’38)

Let D be a distance matrix, and B = −1
2JD(2)J. Then D is Euclidean if

and only if B is SPSD.

Theorem (Forward Direction)

If D is a distance matrix for X , then B = JX T XJ, and hence is SPSD.

Theorem (Reverse Direction)

Conversely, if B is SPSD and has rank k, and B = VΛV T (by the

Spectral Theorem), then choosing X T = VkΛ
1
2
k gives X ⊂ Rk such that

|xi − xj | = Dij .
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Spectral Theorem), then choosing X T = VkΛ
1
2
k gives X ⊂ Rk such that

|xi − xj | = Dij .
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MDS

Classical MDS Algorithm

Given: D = D(2) – pairwise square-distance matrix, embedding
dimension d

Compute: B = −1
2JD(2)J

Factor: B = VdΛdV T
d (truncated SVD if B has larger rank)

Set: yi = (VdΛ
1
2
d )i: – final embedded points
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MDS

Claim: This Y minimizes strain

Strain(y1, . . . , yN) :=

(∑
i,j(Bij −

〈
yi , yj

〉
)2∑

i,j B2
i,j

) 1
2

=
∥B − Y T Y∥F

∥B∥F

Recall VdΛdV T
d is a solution to minX :rank(X)≤d ∥B − X∥F by the

Eckhart–Young–Mirsky Theorem

So setting Y T = VdΛ
1
2
d so that X = Y T Y is a solution to

minY :rank(Y )≤d ∥B − Y T Y∥F

So MDS is E–Y–M in yet another guise!
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MDS

Comments:
The previous algorithm is often called “classical MDS" (but
sometimes people call the version that minimizes stress classical
MDS, so take care when reading

This version doesn’t necessarily keep our objective of maintaining
pairwise distances
But it is easy because the solution is just the SVD!
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Metric MDS

Recall our general loss function:

L(f ,DX , y1, . . . , yN) :=

(∑
i,j(f (yi , yj)− DX

ij )
2∑

i,j(D
X
ij )

2

) 1
2

Metric MDS is when we take f (yi , yj) = |yi − yj |
In this case, the loss function is called stress

stress(DX , y1, . . . , yN) :=

(∑
i,j(|yi − yj | − DX

ij )
2∑

i,j(D
X
ij )

2

) 1
2
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Metric MDS

Unlike Classical MDS, Metric MDS does not have a closed form
solution. The embedded points Y are found via optimization (e.g.,
stress majorization or (stochastic) gradient descent)

Applications: Graph Drawing

Input: G = (V ,E ,w), and Dij = dG(vi , vj) (graph-theoretic shortest
path distance)

Output: drawing of the graph in R2 (typically) or R3

Minimizing stress keeps the points from colliding
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Applications

Exploratory Data Visualization
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