Mini-Course on Dimensionality Reduction and Manifold Learning

Part 2: Nonlinear Dimensionality Reduction

Keaton Hamm
University of Texas at Arlington

November 23, 2022

Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^{m}. (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^{d} for some d - this d is the same for the whole manifold and is it's dimension)

Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^{m}. (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^{d} for some d - this d is the same for the whole manifold and is it's dimension)

Often an implicit (though sometimes explicit) hypothesis for Machine Learning methods, e.g., Deep Neural Network classifiers

Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^{m}. (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^{d} for some d - this d is the same for the whole manifold and is it's dimension)

Often an implicit (though sometimes explicit) hypothesis for Machine Learning methods, e.g., Deep Neural Network classifiers

More generally: data can come from union of manifolds

Problem 3: Preserve distance structure / geometry of data while significantly reducing the dimension

Given: $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{M} d$-dimensional smooth manifold embedded in \mathbb{R}^{D}
Find: $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{m}, \quad d \leq m \ll D$ such that

$$
\left|\phi\left(x_{i}\right)-\phi\left(x_{j}\right)\right| \approx d_{M}\left(x_{i}, x_{j}\right)
$$

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]

ISOMAP

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]
Given: $X \subset \mathbb{R}^{D}$ that we suspect lies on a d-dimensional manifold \mathcal{M} (note d is a parameter here)

ISOMAP

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]
Given: $X \subset \mathbb{R}^{D}$ that we suspect lies on a d-dimensional manifold \mathcal{M} (note d is a parameter here)

Step 1: Estimate geodesic distances $D_{i j} \approx d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$

ISOMAP

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]
Given: $X \subset \mathbb{R}^{D}$ that we suspect lies on a d-dimensional manifold \mathcal{M} (note d is a parameter here)

Step 1: Estimate geodesic distances $D_{i j} \approx d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$
Step 2: Run MDS on D (i.e., $B=-\frac{1}{2} J D^{(2)} J$ and compute $\left.B=V_{d} \Lambda_{d} V_{d}^{T}\right)$ and set $y_{i}=\left(V_{d} \Lambda_{d}^{\frac{1}{2}}\right)_{i}$

ISOMAP

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]
Given: $X \subset \mathbb{R}^{D}$ that we suspect lies on a d-dimensional manifold \mathcal{M} (note d is a parameter here)

Step 1: Estimate geodesic distances $D_{i j} \approx d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$
Step 2: Run MDS on D (i.e., $B=-\frac{1}{2} J D^{(2)} J$ and compute $\left.B=V_{d} \Lambda_{d} V_{d}^{T}\right)$ and set $y_{i}=\left(V_{d} \Lambda_{d}^{\frac{1}{2}}\right)_{i}$

The tricky part is Step 1

ISOMAP

Estimating geodesics:

ISOMAP

Estimating geodesics:
Step 1: Make a graph $G=(X, E, w)$ (e.g., ε-neighborhood or $k-N N)$

ISOMAP

Estimating geodesics:
Step 1: Make a graph $G=(X, E, w)$ (e.g., ε-neighborhood or $k-N N)$
Step 2: Compute graph shortest path distances (sometimes called APSP, or All-Pairs Shortest Path in the theoretical CS literature)

ISOMAP

Estimating geodesics:
Step 1: Make a graph $G=(X, E, w)$ (e.g., ε-neighborhood or $k-N N)$
Step 2: Compute graph shortest path distances (sometimes called APSP, or All-Pairs Shortest Path in the theoretical CS literature)

Set $D_{i j}=d_{G}\left(x_{i}, x_{j}\right)$ - the expectation is that $d_{G}\left(x_{i}, x_{j}\right) \approx d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$

Graphs From Data

Fundamental Question: Given data structure, and a task, how do we form a graph from the data to accomplish our task well?

Graphs From Data

Fundamental Question: Given data structure, and a task, how do we form a graph from the data to accomplish our task well?

Unfortunately, there are few principled ways to do this in general

Graphs From Data

Fundamental Question: Given data structure, and a task, how do we form a graph from the data to accomplish our task well?

Unfortunately, there are few principled ways to do this in general
Given data $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{m}$, set

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}
$$

Graphs From Data

Fundamental Question: Given data structure, and a task, how do we form a graph from the data to accomplish our task well?

Unfortunately, there are few principled ways to do this in general
Given data $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{m}$, set

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}
$$

Many ways to define edges

Graphs From Data

Euclidean Graph - Connect all vertices to each other (complete graph); weights given by

$$
w_{i j}:=w\left(x_{i}, x_{j}\right):=\left|x_{i}-x_{j}\right|
$$

Graphs From Data

Euclidean Graph - Connect all vertices to each other (complete graph); weights given by

$$
w_{i j}:=w\left(x_{i}, x_{j}\right):=\left|x_{i}-x_{j}\right|
$$

ε-neighborhood graph - At each vertex, place ball of radius $\varepsilon>0$ and connect to vertices inside that ball

$$
w_{i j}^{\varepsilon}:= \begin{cases}\left|x_{i}-x_{j}\right|, & \left|x_{i}-x_{j}\right| \leq \varepsilon \\ \infty, & \text { otherwise }\end{cases}
$$

Graphs From Data

Euclidean Graph - Connect all vertices to each other (complete graph); weights given by

$$
w_{i j}:=w\left(x_{i}, x_{j}\right):=\left|x_{i}-x_{j}\right|
$$

ε-neighborhood graph - At each vertex, place ball of radius $\varepsilon>0$ and connect to vertices inside that ball

$$
w_{i j}^{\varepsilon}:= \begin{cases}\left|x_{i}-x_{j}\right|, & \left|x_{i}-x_{j}\right| \leq \varepsilon \\ \infty, & \text { otherwise }\end{cases}
$$

k-Nearest Neighbors (kNN) graph - For $i=1, \ldots, n$, let K_{i} be the set of k nearest neighbors of x_{i} (nearness determined by Euclidean distance).

Graphs From Data

Euclidean Graph - Connect all vertices to each other (complete graph); weights given by

$$
w_{i j}:=w\left(x_{i}, x_{j}\right):=\left|x_{i}-x_{j}\right|
$$

ε-neighborhood graph - At each vertex, place ball of radius $\varepsilon>0$ and connect to vertices inside that ball

$$
w_{i j}^{\varepsilon}:= \begin{cases}\left|x_{i}-x_{j}\right|, & \left|x_{i}-x_{j}\right| \leq \varepsilon \\ \infty, & \text { otherwise }\end{cases}
$$

$k-$ Nearest Neighbors (kNN) graph - For $i=1, \ldots, n$, let K_{i} be the set of k nearest neighbors of x_{i} (nearness determined by Euclidean distance).
Connect $x_{i} \sim x_{j}$ with an edge of weight $\left|x_{i}-x_{j}\right|$ if $x_{j} \in K_{i}$.

Graphs From Data

Mutual kNN graph $-x_{i} \sim x_{j}$ iff $x_{i} \in K_{j}$ and $x_{j} \in K_{i}$

Graphs From Data

Mutual kNN graph $-x_{i} \sim x_{j}$ iff $x_{i} \in K_{j}$ and $x_{j} \in K_{i}$
Gaussian weighted graph - Fully connected with weights

$$
w_{i j}^{\sigma}:=e^{-\frac{\left|x_{i}-x_{j}\right|^{2}}{\sigma^{2}}}
$$

Graphs From Data

Mutual kNN graph $-x_{i} \sim x_{j}$ iff $x_{i} \in K_{j}$ and $x_{j} \in K_{i}$
Gaussian weighted graph - Fully connected with weights

$$
w_{i j}^{\sigma}:=e^{-\frac{\left|x_{i}-x_{j}\right|^{2}}{\sigma^{2}}}
$$

Note: σ, ε, and k are parameters that must be chosen. Poor choices can lead to bad results

ISOMAP Redux:

Step 1: Form a graph from the given data
Step 2: Compute APSP and set $D_{i j}=d_{G}\left(x_{i}, x_{j}\right)$
Step 3: Run MDS on D and set $y_{i}=\left(V_{d} \Lambda_{d}^{\frac{1}{2}}\right)_{i \text { : }}$

ISOMAP

ISOMAP Redux:

Step 1: Form a graph from the given data
Step 2: Compute APSP and set $D_{i j}=d_{G}\left(x_{i}, x_{j}\right)$
Step 3: Run MDS on D and set $y_{i}=\left(V_{d} \Lambda_{d}^{\frac{1}{2}}\right)_{i \text { : }}$
Parameters: d - embedding dimension, and ε or k (for neighborhood graph)

ISOMAP

ISOMAP Redux:

Step 1: Form a graph from the given data
Step 2: Compute APSP and set $D_{i j}=d_{G}\left(x_{i}, x_{j}\right)$
Step 3: Run MDS on D and set $y_{i}=\left(V_{d} \Lambda_{d}^{\frac{1}{2}}\right)_{i \text { : }}$
Parameters: d - embedding dimension, and ε or k (for neighborhood graph)

Also note: we need a large sampling of the manifold to ensure that $d_{G} \approx d_{\mathcal{M}}$

ISOMAP

Measuring success is difficult, so ISOMAP is often used as exploratory analysis

ISOMAP

Measuring success is difficult, so ISOMAP is often used as exploratory analysis

Exact Embeddings

If one knows $d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$ and \mathcal{M} is isometric up to a constant to $\Omega \subset \mathbb{R}^{d}$, then ISOMAP using the manifold distances is MDS on these, and hence the embedding satisfies $\left|y_{i}-y_{j}\right|=c d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$.

Exact Embeddings

If one knows $d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$ and \mathcal{M} is isometric up to a constant to $\Omega \subset \mathbb{R}^{d}$, then ISOMAP using the manifold distances is MDS on these, and hence the embedding satisfies $\left|y_{i}-y_{j}\right|=c d_{\mathcal{M}}\left(x_{i}, x_{j}\right)$.

In general we need to understand

- How well $d_{G^{\varepsilon}}$ approximates $d_{\mathcal{M}}$
- Perturbations of MDS embeddings

Geodesic Approximation

Theorem (Bernstein et al. '00, Arias-Castro and Le Gouic. '17)

Let $\mathcal{M} \subset \mathbb{R}^{D}$ be a smooth, compact manifold with reach r. Suppose $X=\left\{x_{i}\right\} \subset \mathcal{M}$ is a δ-sampling of \mathcal{M}. If G^{ε} is an ε-neighborhood graph over X and $\varepsilon<r$, then

$$
\left(1-c_{0}\left(\frac{\varepsilon}{r}\right)^{2}\right) d_{\mathcal{M}}\left(x_{i}, x_{j}\right) \leq d_{G^{\varepsilon}}\left(x_{i}, x_{j}\right) \leq\left(1+c_{0}\left(\frac{\delta}{\varepsilon}\right)^{2}\right) d_{\mathcal{M}}\left(x_{i}, x_{j}\right)
$$

- δ-sampling: for every $x \in \mathcal{M}, d_{\mathcal{M}}\left(x, x_{i}\right) \leq \delta$ for some x_{i}
- reach: sup of $t \geq 0$ such that every point at distance t away from \mathcal{M} has a unique closest point in \mathcal{M}

MDS Perturbation Bound

Theorem (Arias-Castro, Javanmard, Pelletier, '20)

Let $y_{1}, \ldots, y_{N} \in \mathbb{R}^{d}$ be centered, span \mathbb{R}^{d}, and set $\Delta_{i j}=\left|y_{i}-y_{j}\right|^{2}$. Let $\left\{\Lambda_{i j}\right\}_{i, j=1}^{N}$ be arbitrary real numbers.
If $\left\|Y^{\dagger}\right\|\|\Lambda-\Delta\|_{F}^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}}$, then MDS with input $\left\{\Lambda_{i, j}\right\}$ and embedding dimension d returns a point set $z_{1}, \ldots, z_{N} \in \mathbb{R}^{d}$ satisfying

$$
\min _{Q \in \mathcal{O}(d)}\|Z-Y Q\|_{F} \leq(1+\sqrt{2})\left\|Y^{\dagger}\right\|\|\Lambda-\Delta\|_{F} .
$$

ISOMAP Perturbation Bound

Theorem (Arias-Castro et al. '20)

Let \mathcal{M} be as before and isometric to a convex subset of \mathbb{R}^{d}. Let $\xi=c_{0} \max \left\{\left(\frac{\varepsilon}{r}\right)^{2},\left(\frac{\delta}{\varepsilon}\right)^{2}\right\}$. Let $\left\{y_{i}\right\} \subset \mathbb{R}^{d}$ be an exact centered embedding of $\left\{x_{i}\right\} \subset \mathcal{M}$. If $\xi \leq \frac{1}{24}\left(\|Y\|\left\|Y^{\dagger}\right\|\right)^{-2}$, then ISOMAP returns points $\left\{z_{i}\right\} \subset \mathbb{R}^{d}$ such that

$$
\min _{Q \in \mathcal{O}(d)}\|Z-Y Q\|_{F} \leq 36 \sqrt{d}\|Y\|^{3}\left\|Y^{\dagger}\right\|^{2} \xi
$$

Note: For fixed ε, small ξ corresponds to small reach and small δ (denser sampling) so that graph geodesics more closely approximate manifold geodesics.

Corollary

Let $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{D}$ be arbitrary. Suppose $\mathcal{M} \subset \mathbb{R}^{D}$ is isometric to $\Omega \subset \mathbb{R}^{d}$, and $\left\{\hat{x}_{i}\right\}_{i=1}^{N} \subset \mathcal{M}$ and $\left\{y_{i}\right\} \subset \Omega$ are such that $\left|y_{i}-y_{j}\right|=\left|\hat{x}_{i}-\hat{x}_{j}\right|$.
Let $\triangle_{i j}:=d_{\mathcal{M}}\left(\hat{x}_{i}, \hat{x}_{j}\right)^{2}, \Gamma_{i j}:=\left|x_{i}-x_{j}\right|^{2}$, and $\wedge_{i j}:=\lambda_{i j}^{2}$ for some $\lambda_{i j} \in \mathbb{R}$. Let z_{i} be the points given by MDS with embedding dimension d from \wedge. If $\left|\Gamma_{i j}-\triangle_{i j}\right| \leq \tau_{1}$ and $\left|\triangle_{i j}-\Lambda_{i j}\right| \leq \tau_{2}$, and if

$$
\left\|Y^{\dagger}\right\| \sqrt{N}\left(\tau_{1}+\tau_{2}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}}
$$

then $\left\{z_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ satisfies

$$
\min _{Q \in \mathcal{O}(d)}\|Z-Y Q\|_{F} \leq(1+\sqrt{2})\left\|Y^{\dagger}\right\| N\left(\tau_{1}+\tau_{2}\right)
$$

- τ_{1} - how far away $\left\{x_{i}\right\}$ is away from the manifold samples
- τ_{2} - how well geodesics are estimated

More Nonlinear Dimensionality Reduction Methods!

Now we will take a look at some similar methods:

- Local Linear Embedding (LLE) [Roweis and Saul '00]
- Laplacian Eigenmaps [Belkin and Niyogi, '03]
- Diffusion Maps [Coifman and Lafon, '06]

Parameters: k - number of neighbors, d-embedding dimension

LLE

Parameters: k - number of neighbors, d-embedding dimension
Step 1: For all $x \in X$, compute the k nearest neighbors of $X, N_{x}^{k} \subset X$

LLE

Parameters: k - number of neighbors, d-embedding dimension
Step 1: For all $x \in X$, compute the k nearest neighbors of $X, N_{x}^{k} \subset X$
Step 2: For all $x_{i} \in X$, compute weights to best linearly reconstruct x from points in $N_{x_{i}}^{k}$:

$$
\min _{w_{i j}}\left\|x-\sum_{j: x_{j} \in N_{x_{i}}^{k}} w_{i j} x_{j}\right\|_{2}^{2}
$$

LLE

Parameters: k - number of neighbors, d-embedding dimension
Step 1: For all $x \in X$, compute the k nearest neighbors of $X, N_{x}^{k} \subset X$
Step 2: For all $x_{i} \in X$, compute weights to best linearly reconstruct x from points in $N_{x_{i}}^{\kappa}$:

$$
\min _{w_{i j}}\left\|x-\sum_{j: x_{j} \in N_{x_{i}}^{k}} w_{i j} x_{j}\right\|_{2}^{2}
$$

Step 3: Compute embedding coordinates Y as follows: compute the SVD of $(I-W)^{T}(I-W)=V \Sigma V^{\top}$, let V_{N-d-1}^{\prime} contain columns $V_{i, N-d-1}, \ldots, V_{i, N-1}$ (so we ignore the eigenvalue corresponding to $\left.\lambda_{N}=0\right)$, and let $Y_{i}:=V_{i, N-d-1}^{\prime}$

LLE [Roweis and Saul, '00]

LLE is a local method - it reconstructs points via their nearest neighbors, then uses the graph structure of the weight matrix to find the embedding. This preserves high-dimensional neighborhoods in the embedding

LLE [Roweis and Saul, '00]

LLE is a local method - it reconstructs points via their nearest neighbors, then uses the graph structure of the weight matrix to find the embedding. This preserves high-dimensional neighborhoods in the embedding

LLE is more computationally efficient than ISOMAP (only deal with small neighborhoods of each point rather than estimating global geodesics)

Interlude - Graph Laplacians

Recall given $G=(V, E, w), D$ - degree matrix, $W=\left\{w_{i j}\right\}$ - weight matrix

Interlude - Graph Laplacians

Recall given $G=(V, E, w), D$ - degree matrix, $W=\left\{w_{i j}\right\}$ - weight matrix
The Unnormalized Graph Laplacian of G is

$$
L=D-W
$$

Interlude - Graph Laplacians

Recall given $G=(V, E, w), D$ - degree matrix, $W=\left\{w_{i j}\right\}$ - weight matrix
The Unnormalized Graph Laplacian of G is

$$
L=D-W
$$

The Symmetric, Normalized Graph Laplacian of G is

$$
L_{\text {sym }}:=D^{-\frac{1}{2}} L D^{\frac{1}{2}}=I-D^{-\frac{1}{2}} W D^{\frac{1}{2}}
$$

Interlude - Graph Laplacians

Recall given $G=(V, E, w), D$ - degree matrix, $W=\left\{w_{i j}\right\}$ - weight matrix
The Unnormalized Graph Laplacian of G is

$$
L=D-W
$$

The Symmetric, Normalized Graph Laplacian of G is

$$
L_{\text {sym }}:=D^{-\frac{1}{2}} L D^{\frac{1}{2}}=I-D^{-\frac{1}{2}} W D^{\frac{1}{2}}
$$

The Random Walk Graph Laplacian of G is

$$
L_{\mathrm{rw}}:=D^{-1} L=I-D^{-1} W
$$

Properties of Graph Laplacians

Theorem

The following hold:

- $\forall x \in \mathbb{R}^{n}$,

$$
\left\langle L_{\text {sym }} x, x\right\rangle=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(\frac{x_{i}}{\sqrt{d_{i}}}-\frac{x_{j}}{\sqrt{d_{j}}}\right)^{2}
$$

- $L_{\text {sym }}$ and $L_{r w}$ are SPSD
- (λ, u) is an eigenpair of $L_{r w}$ iff $\left(\lambda, D^{\frac{1}{2}} u\right)$ is an eigenpair of $L_{\text {sym }}$
- $(0, \mathbb{1})$ is an eigenpair of $L_{r w}$. Hence $\left(0, D^{\frac{1}{2}} \mathbb{1}\right)$ is an eigenpair of $L_{\text {sym }}$.

Laplacian Eigenmaps [Belkin and Nyogi, '03]

Parameters: ε / k for neibhborhood graph, d - embedding dimension

Laplacian Eigenmaps [Belkin and Nyogi, '03]

Parameters: ε / k for neibhborhood graph, d - embedding dimension Step 1: Create ε-neighborhood or $k-N N$ graph over X, but weight edges as

$$
w_{i j}=e^{-\frac{\left|x_{i}-x_{j}\right|_{2}^{2}}{\sigma^{2}}}, \quad(i, j) \in E
$$

Laplacian Eigenmaps [Belkin and Nyogi, '03]

Parameters: ε / k for neibhborhood graph, d - embedding dimension Step 1: Create ε-neighborhood or $k-N N$ graph over X, but weight edges as

$$
w_{i j}=e^{-\frac{\left|x_{i}-x_{j}\right|_{2}^{2}}{\sigma^{2}}}, \quad(i, j) \in E
$$

Step 2: For each connected component of G, solve the generalized eigenvalue problem

$$
L x=\lambda D x, \quad(L=D-W)
$$

Laplacian Eigenmaps [Belkin and Nyogi, '03]

Step 3: Embedded points are

$$
y_{i}=V_{i, N-d-1}^{\prime}
$$

(as in LLE)

Diffusion Maps [Coifman and Lafon, '06]

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$
\mathbb{P}[X(t+1)=j \mid X(t)=i]=\frac{w_{i j}}{d_{i}}
$$

Diffusion Maps [Coifman and Lafon, '06]

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$
\begin{gathered}
\mathbb{P}[X(t+1)=j \mid X(t)=i]=\frac{w_{i j}}{d_{i}} \\
M_{i j}:=\frac{w_{i j}}{d_{i}} \Rightarrow M=D^{-1} W
\end{gathered}
$$

Diffusion Maps [Coifman and Lafon, '06]

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$
\begin{gathered}
\mathbb{P}[X(t+1)=j \mid X(t)=i]=\frac{w_{i j}}{d_{i}} \\
M_{i j}:=\frac{w_{i j}}{d_{i}} \Rightarrow M=D^{-1} W
\end{gathered}
$$

Now suppose we start a walk at node i and look at where we get at time t

Diffusion Maps [Coifman and Lafon, '06]

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$
\begin{gathered}
\mathbb{P}[X(t+1)=j \mid X(t)=i]=\frac{w_{i j}}{d_{i}} \\
M_{i j}:=\frac{w_{i j}}{d_{i}} \Rightarrow M=D^{-1} W
\end{gathered}
$$

Now suppose we start a walk at node i and look at where we get at time t

$$
\mathbb{P}[X(t)=j \mid X(0)=i]=\left(M^{t}\right)_{i j}
$$

Diffusion Maps [Coifman and Lafon, '06]

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$
\begin{gathered}
\mathbb{P}[X(t+1)=j \mid X(t)=i]=\frac{w_{i j}}{d_{i}} \\
M_{i j}:=\frac{w_{i j}}{d_{i}} \Rightarrow M=D^{-1} W
\end{gathered}
$$

Now suppose we start a walk at node i and look at where we get at time t

$$
\mathbb{P}[X(t)=j \mid X(0)=i]=\left(M^{t}\right)_{i j}
$$

Thus the "probability cloud" of points with their probabilities of the random walker at time t is the row $M_{i \text { : }}^{t}$

Diffusion Maps [Coifman and Lafon, '06]

Note: we could very well represent the graph by $M_{i ;}^{t}$, but this would have embedding dimension $n=|V|$, which isn't good. So let's keep working.

Diffusion Maps [Coifman and Lafon, '06]

Note: we could very well represent the graph by $M_{i ;}^{t}$, but this would have embedding dimension $n=|V|$, which isn't good. So let's keep working.

$$
M_{s}:=D^{\frac{1}{2}} M D^{-\frac{1}{2}}=V \wedge V^{\top}
$$

Diffusion Maps [Coifman and Lafon, '06]

Note: we could very well represent the graph by $M_{i ;}^{t}$, but this would have embedding dimension $n=|V|$, which isn't good. So let's keep working.

$$
M_{s}:=D^{\frac{1}{2}} M D^{-\frac{1}{2}}=V \wedge V^{T}
$$

Note:

$$
M=D^{-\frac{1}{2}} M_{s} D^{\frac{1}{2}}=D^{-\frac{1}{2}} V \wedge V^{T} D^{\frac{1}{2}}=\left(D^{-\frac{1}{2}} V\right) \wedge\left(D^{\frac{1}{2}} V\right)^{T}=: \Phi \wedge \psi^{T} .
$$

Diffusion Maps [Coifman and Lafon, '06]

Note: we could very well represent the graph by $M_{i ;}^{t}$, but this would have embedding dimension $n=|V|$, which isn't good. So let's keep working.

$$
M_{s}:=D^{\frac{1}{2}} M D^{-\frac{1}{2}}=V \wedge V^{T}
$$

Note:

$$
M=D^{-\frac{1}{2}} M_{s} D^{\frac{1}{2}}=D^{-\frac{1}{2}} V \wedge V^{T} D^{\frac{1}{2}}=\left(D^{-\frac{1}{2}} V\right) \wedge\left(D^{\frac{1}{2}} V\right)^{T}=: \Phi \wedge \psi^{T} .
$$

Note: Φ, Ψ form a biorthogonal system - i.e., $\Psi^{\top} \Phi=\Phi^{\top} \Psi=I$, equivalently $\phi_{i}^{T} \psi_{j}=\delta_{i j}$

Diffusion Maps [Coifman and Lafon, '06]

Note: we could very well represent the graph by M_{i}^{t}, but this would have embedding dimension $n=|V|$, which isn't good. So let's keep working.

$$
M_{s}:=D^{\frac{1}{2}} M D^{-\frac{1}{2}}=V \wedge V^{T}
$$

Note:

$$
M=D^{-\frac{1}{2}} M_{s} D^{\frac{1}{2}}=D^{-\frac{1}{2}} V \wedge V^{T} D^{\frac{1}{2}}=\left(D^{-\frac{1}{2}} V\right) \wedge\left(D^{\frac{1}{2}} V\right)^{T}=: \Phi \wedge \psi^{T} .
$$

Note: Φ, Ψ form a biorthogonal system - i.e., $\Psi^{\top} \Phi=\Phi^{\top} \Psi=I$, equivalently $\phi_{i}^{T} \psi_{j}=\delta_{i j}$ Also,

$$
M \phi_{k}=\lambda_{k} \phi_{k}, \quad \psi_{k}^{T} M=\lambda_{k} \phi_{k}^{T}
$$

Diffusion Maps [Coifman and Lafon, '06]

From $M=\Phi \Lambda \psi^{T}$,

$$
M=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \psi_{i}^{T}
$$

Diffusion Maps [Coifman and Lafon, '06]

From $M=\Phi \Lambda \psi^{T}$,

$$
M=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \psi_{i}^{T}
$$

Thus

$$
M^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i} \psi_{i}^{T}
$$

Diffusion Maps [Coifman and Lafon, '06]

From $M=\Phi \wedge \psi^{T}$,

$$
M=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \psi_{i}^{T}
$$

Thus

$$
M^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i} \psi_{i}^{T}
$$

Back to our suggestion before:

$$
M_{k:}^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i}(k) \psi_{i}^{T}
$$

Diffusion Maps [Coifman and Lafon, '06]

From $M=\Phi \wedge \Psi^{T}$,

$$
M=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \psi_{i}^{T}
$$

Thus

$$
M^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i} \psi_{i}^{T}
$$

Back to our suggestion before:

$$
M_{k:}^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i}(k) \psi_{i}^{T}
$$

So we can represent node v_{i} in terms of the basis ψ, and put

$$
v_{i} \mapsto\left[\begin{array}{c}
\lambda_{1}^{t} \phi_{1}(i) \\
\vdots \\
\lambda_{n}^{t} \phi_{n}(i)
\end{array}\right]
$$

Diffusion Maps [Coifman and Lafon, '06]

Note that $M \mathbb{1}=\mathbb{1}$, and $\phi_{1}=\mathbb{1}$ with $\lambda_{1}=1$ by previous analysis (note that $\left.M=D^{-1} W=I-L_{\text {rw }}\right)$

Diffusion Maps [Coifman and Lafon, '06]

Note that $M \mathbb{1}=\mathbb{1}$, and $\phi_{1}=\mathbb{1}$ with $\lambda_{1}=1$ by previous analysis (note that $\left.M=D^{-1} W=I-L_{\text {rw }}\right)$
Thus ϕ_{n} doesn't tell us any information, so we define the diffusion map $\phi_{t}: V \rightarrow \mathbb{R}^{n-1}$ via

$$
v_{i} \mapsto\left[\begin{array}{c}
\lambda_{2}^{t} \phi_{1}(i) \\
\vdots \\
\lambda_{n}^{t} \phi_{n}(i)
\end{array}\right]
$$

Diffusion Maps [Coifman and Lafon, '06]

Note that $M \mathbb{1}=\mathbb{1}$, and $\phi_{1}=\mathbb{1}$ with $\lambda_{1}=1$ by previous analysis (note that $\left.M=D^{-1} W=I-L_{\mathrm{rw}}\right)$
Thus ϕ_{n} doesn't tell us any information, so we define the diffusion map $\phi_{t}: V \rightarrow \mathbb{R}^{n-1}$ via

$$
v_{i} \mapsto\left[\begin{array}{c}
\lambda_{2}^{t} \phi_{1}(i) \\
\vdots \\
\lambda_{n}^{t} \phi_{n}(i)
\end{array}\right]
$$

Similar to other methods, the truncated diffusion map is $\phi_{t}^{(d)}: V \rightarrow \mathbb{R}^{d}$ via

$$
\phi_{t}^{(d)}\left(v_{i}\right)=\left[\begin{array}{c}
\lambda_{2}^{t} \phi_{2}(i) \\
\vdots \\
\lambda_{d+1}^{t} \phi_{d+1}(i)
\end{array}\right]=\left(\Lambda_{d+1}^{\prime}\right)^{t}\left(\Phi_{d+1}^{\prime}\right)_{i:}
$$

Diffusion Maps [Coifman and Lafon, '06]

Useful Property: Diffusion maps give a measure of distance between probability clouds after time t for walkers starting at different nodes:

Diffusion Maps [Coifman and Lafon, '06]

Useful Property: Diffusion maps give a measure of distance between probability clouds after time t for walkers starting at different nodes:

Theorem

For any v_{i}, v_{j}

$$
\begin{aligned}
& \left\|\phi_{t}\left(v_{i}\right)-\phi_{t}\left(v_{j}\right)\right\|_{2}^{2}= \\
& \quad \sum_{k=1}^{n} \frac{1}{d_{k}}(\mathbb{P}[X(t)=k \mid X(0)=i]-\mathbb{P}[X(t)=k \mid X(0)=j])^{2}
\end{aligned}
$$

Diffusion Maps [Coifman and Lafon, '06]

Algorithm

Step 1: Form graph (ε-neighborhood or $k-N N$)
Step 2: $M=\Phi \wedge \Psi^{T}$
Step 3: Diffusion map: $\phi_{t}: V \rightarrow \mathbb{R}^{d}$ as above
Parameters: $\varepsilon / k, t$

Comparison

Question: So how are Diffusion Maps and Laplacian Eigenmaps

 different?
Comparison

Question: So how are Diffusion Maps and Laplacian Eigenmaps different?

- DM uses $L_{r w}$ and its eigenvectors, wheras LE uses L and its eigenvectors.

Comparison

Question: So how are Diffusion Maps and Laplacian Eigenmaps different?

- DM uses $L_{r w}$ and its eigenvectors, wheras $L E$ uses L and its eigenvectors.
- DM uses scaling by powers of λ_{i} which represents a random walk diffusing over the graph (note: $\left|\lambda_{i}\right| \leq 1$ for all eigenvalues of M, so diffusion maps don't blow up)

Part III: Functional Manifold Learning

Image Manifold Learning Pipeline

$$
\mathscr{F} \xrightarrow{\mathcal{H}} \mathbb{R}^{D} \xrightarrow{\phi} \mathbb{R}^{d} \xrightarrow{\mathcal{D}} \Lambda
$$

Image Manifold Learning Pipeline

$$
\mathscr{F} \xrightarrow{\mathcal{H}} \mathbb{R}^{D} \xrightarrow{\phi} \mathbb{R}^{d} \xrightarrow{\mathcal{D}} \Lambda
$$

- $\mathscr{F}=$ image space
- $\Lambda=$ decision/label space
- $\mathcal{H}: \mathscr{F} \rightarrow \mathbb{R}^{D}=$ imaging/discretization operator
- $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}=$ dimensionality reduction operator
- $\mathcal{D}: \mathbb{R}^{d} \rightarrow \Lambda=$ decision operator

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

- Ignores \mathscr{F}
- Ignores discretization process / imaging operation, which can vary greatly
- Treats preprocessing as a black box

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

- Ignores \mathscr{F}
- Ignores discretization process / imaging operation, which can vary greatly
- Treats preprocessing as a black box

Now we will take a Functional Manifold Hypothesis: $\mathcal{M} \subset \mathscr{F}$

What's in a distance?

What's in a distance?

If we treat images as Euclidean, pixelwise $\left(\ell_{2}\right)$ distances can be meaningless

What function space should we consider as \mathscr{F} ?

Case study: $\mathscr{F}=L_{2}\left(\mathbb{R}^{m}\right)$

[Donoho, Grimes '05]
$\mathcal{M} \subset L_{2}\left(\mathbb{R}^{m}\right)$
Question: Given two samples from \mathscr{F}, how can we estimate the geodesic distance between them?

Case study: $\mathscr{F}=L_{2}\left(\mathbb{R}^{m}\right)$

[Donoho, Grimes '05]
$\mathcal{M} \subset L_{2}\left(\mathbb{R}^{m}\right)$
Question: Given two samples from \mathscr{F}, how can we estimate the geodesic distance between them?

Case study: $\mathscr{F}=L_{2}\left(\mathbb{R}^{m}\right)$

[Donoho, Grimes '05]
$\mathcal{M} \subset L_{2}\left(\mathbb{R}^{m}\right)$
Question: Given two samples from \mathscr{F}, how can we estimate the geodesic distance between them?

Option 1: Use the induced intrinsic metric on \mathscr{F} induced by the ambient L_{2} norm

Case study: $\mathscr{F}=L_{2}\left(\mathbb{R}^{m}\right)$

[Donoho, Grimes '05]
$\mathcal{M} \subset L_{2}\left(\mathbb{R}^{m}\right)$
Question: Given two samples from \mathscr{F}, how can we estimate the geodesic distance between them?

Option 1: Use the induced intrinsic metric on \mathscr{F} induced by the ambient L_{2} norm
$\Gamma\left(f_{i}, f_{j}\right)=$ set of all continuous paths $\gamma:[0,1] \rightarrow L_{2}$ such that
$\gamma(0)=f_{i}, \gamma(1)=f_{j}$

$$
d_{\mathscr{F}, L_{2}}\left(f_{i}, f_{j}\right):=\inf _{\gamma \in \Gamma\left(f_{i}, f_{j}\right)} L(\gamma)=\inf _{\gamma \in \Gamma\left(f_{i}, f_{j}\right)} \sup _{t_{0}, \ldots, t_{m}} \sum_{k=1}^{m}\left\|\gamma\left(t_{k-1}\right)-\gamma\left(t_{k}\right)\right\|_{L_{2}}
$$

Case study: $\mathscr{F}=L_{2}\left(\mathbb{R}^{m}\right)$

- Geodesics based on $\|\cdot\|_{L_{2}}$ blow up unexpectedly (translates of an indicator of a ball)
- One workaround is to mollify functions with Gaussians of decreasing width and normalize by a reference trajectory

ISOMAP on L_{2}

Consider $\mathscr{F}^{\text {transl }}:=\left\{f_{0}(\cdot-t), t \in \alpha \mathbb{Z}^{2}\right\} \subset L_{2}\left(\mathbb{R}^{2}\right)$ with $f_{0}=\mathbb{1}_{D}$

ISOMAP on L_{2}

Consider $\mathscr{F}^{\text {ransl }}:=\left\{f_{0}(\cdot-t), t \in \alpha \mathbb{Z}^{2}\right\} \subset L_{2}\left(\mathbb{R}^{2}\right)$ with $f_{0}=\mathbb{1}_{D}$

ISOMAP on L_{2}

Consider $\mathscr{F}^{\text {transl }}:=\left\{f_{0}(\cdot-t), t \in \alpha \mathbb{Z}^{2}\right\} \subset L_{2}\left(\mathbb{R}^{2}\right)$ with $f_{0}=\mathbb{1}_{D}$

Problem: pairwise distances are essentially constant

ISOMAP on L_{2}

Theorem (Donoho, Grimes '05)
$\left(\mathscr{F}^{\text {transl }}, d_{\mathscr{F}, L_{2}}\right)$ is isometric to $\Omega \subset \mathbb{R}^{d}$ if and only if f_{0} is differentiable.

Option 2: View images as non-negative L_{1} functions with compact support.

Option 2: View images as non-negative L_{1} functions with compact support.

Option 2: View images as non-negative L_{1} functions with compact support.

These can be naturally embedded into the space of probability measures as follows
$\operatorname{Map}\left(\mathscr{F}, d_{\mathscr{F}}\right) \subset\left(L_{2},\|\cdot\|_{L_{2}}\right)$ into $\left(\widetilde{\mathscr{F}}, W_{2}\right) \subset\left(\mathcal{P}\left(\mathbb{R}^{2}\right), W_{2}\right)$

$$
f \mapsto \frac{f}{\|f\|_{L_{1}}}
$$

Wasserstein Metric (A Fly-by Overview)

Main Idea: Optimal Transport. What is the optimal transport plan to map one probability distribution to another? (Monge, 1781)

Wasserstein Metric (A Fly-by Overview)

Main Idea: Optimal Transport. What is the optimal transport plan to map one probability distribution to another? (Monge, 1781)
Given $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{2}\right)$, denote the space of couplings

$$
\Pi(\mu, \nu):=\left\{\pi \in \mathcal{P}\left(\mathbb{R}^{4}\right): \pi\left(\boldsymbol{A} \times \mathbb{R}^{2}\right)=\mu(A), \pi\left(\mathbb{R}^{2} \times \boldsymbol{A}\right)=\nu(A), A \in \mathbb{R}^{2}\right\}
$$

Wasserstein Metric (A Fly-by Overview)

The 2-Wasserstein metric is defined by

$$
W_{2}^{2}(\mu, \nu):=\min _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{2} d \pi
$$

Wasserstein Metric (A Fly-by Overview)

The 2-Wasserstein metric is defined by

$$
W_{2}^{2}(\mu, \nu):=\min _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{2} d \pi
$$

(e.g., Villani's book) 1) $\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a length space, 2$)$ the optimal coupling π^{*} is equivalent to finding a transport map (change of variables) such that

$$
f_{j}(T(x))\left|J_{T}(x)\right|=f_{i}(x)
$$

Wasserstein Metric (A Fly-by Overview)

The 2-Wasserstein metric is defined by

$$
W_{2}^{2}(\mu, \nu):=\min _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{2} d \pi
$$

(e.g., Villani's book) 1) $\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a length space, 2$)$ the optimal coupling π^{*} is equivalent to finding a transport map (change of variables) such that

$$
f_{j}(T(x))\left|J_{T}(x)\right|=f_{i}(x)
$$

Induces the displacement interpolant

$$
T_{t}(x):=(1-t) x+t T(x)
$$

Wasserstein Metric (A Fly-by Overview)

The 2-Wasserstein metric is defined by

$$
W_{2}^{2}(\mu, \nu):=\min _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{2} d \pi
$$

(e.g., Villani's book) 1$)\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a length space, 2) the optimal coupling π^{*} is equivalent to finding a transport map (change of variables) such that

$$
f_{j}(T(x))\left|J_{T}(x)\right|=f_{i}(x)
$$

Induces the displacement interpolant

$$
T_{t}(x):=(1-t) x+t T(x)
$$

Wasserstein Metric (A Fly-by Overview)

The 2-Wasserstein metric is defined by

$$
W_{2}^{2}(\mu, \nu):=\min _{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^{2 d}}|x-y|^{2} d \pi
$$

(e.g., Villani's book) 1) $\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a length space, 2$)$ the optimal coupling π^{*} is equivalent to finding a transport map (change of variables) such that

$$
f_{j}(T(x))\left|J_{T}(x)\right|=f_{i}(x)
$$

Induces the displacement interpolant

$$
T_{t}(x):=(1-t) x+t T(x)
$$

Case study: $\mathscr{F}=W_{2}\left(\mathbb{R}^{m}\right)$

Functional Wassmap ${ }^{1}$
${ }^{1}$ [H-Henscheid-Kang, '22]

Case study: $\mathscr{F}=W_{2}\left(\mathbb{R}^{m}\right)$

Functional Wassmap ${ }^{1}$

Given $\left\{\mu_{i}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$

- Compute $D=\left(W_{2}\left(\mu_{i}, \mu_{j}\right)^{2}\right)_{i, j=1}^{N}$
- APSP of neighborhood graph
- MDS
${ }^{1}$ [H-Henscheid-Kang, '22]

Discrete Wassmap

Given $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{D}$

Discrete Wassmap

Given $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{D}$

- Measure Formation

- Functional Wassmap

Case studies

Manifolds generated by transformations of a fixed measure
$\Theta \subset \mathbb{R}^{d}$ some parameter set generating maps $T_{\theta}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
\mathcal{M}\left(\mu_{0}, \Theta\right):=\left\{T_{\theta \#} \mu_{0}: \theta \in \Theta\right\}
$$

Case studies

Manifolds generated by transformations of a fixed measure
$\Theta \subset \mathbb{R}^{d}$ some parameter set generating maps $T_{\theta}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
\begin{gathered}
\mathcal{M}\left(\mu_{0}, \Theta\right):=\left\{T_{\theta \#} \mu_{0}: \theta \in \Theta\right\} \\
T_{\#} \mu(A)=\mu\left(T^{-1}(A)\right)
\end{gathered}
$$

Case studies

Manifolds generated by transformations of a fixed measure
$\Theta \subset \mathbb{R}^{d}$ some parameter set generating maps $T_{\theta}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
\begin{gathered}
\mathcal{M}\left(\mu_{0}, \Theta\right):=\left\{T_{\theta \#} \mu_{0}: \theta \in \Theta\right\} \\
T_{\#} \mu(A)=\mu\left(T^{-1}(A)\right)
\end{gathered}
$$

- Translation: $\left\{\mu_{0}(\cdot-\theta)\right\}$
- Dilation: $\left\{\operatorname{det}\left(D_{\theta}\right) \mu_{0}\left(D_{\theta} \cdot\right)\right\} \quad D_{\theta}=\operatorname{diag}\left(\frac{1}{\vartheta_{1}}, \ldots, \frac{1}{\vartheta_{m}}\right)$
- Rotation: $\left\{\mu_{0}\left(R_{\theta} \cdot\right): R_{\theta} \in \mathbf{S O}(m)\right\}$

Translation manifold $-\mu_{0}=\frac{1}{\pi} \mathbb{1}_{D}(x) d x$

Translation manifold $-\mu_{0}=\frac{1}{\pi} \mathbb{1}_{D}(x) d x$

Translation grid

Wassmap Embedding

Dilation manifold $-\mu_{0}=\frac{1}{\pi} \mathbb{1}_{D}(x) d x$

Dilation manifold $-\mu_{0}=\frac{1}{\pi} \mathbb{1}_{D}(x) d x$

Rotation manifold $-\mu_{0}$ indicator of origin centered ellipse

MNIST

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.
Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_{0} \in W_{2}$ (resp. discrete μ_{0}) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.
Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_{0} \in W_{2}$ (resp. discrete μ_{0}) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Translations $\quad\left\{\theta_{i}\right\}$

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.
Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_{0} \in W_{2}$ (resp. discrete μ_{0}) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

$$
\begin{array}{cc}
\text { Translations } & \left\{\theta_{i}\right\} \\
\text { Dilations } & \left\{S \theta_{i}\right\}
\end{array}
$$

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.
Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_{0} \in W_{2}$ (resp. discrete μ_{0}) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

$$
\left.\begin{array}{c}
\text { Translations } \\
\text { Dilations }
\end{array} \begin{array}{c}
\left\{\theta_{i}\right\} \\
\left.S \theta_{i}\right\}
\end{array}\right] \begin{gathered}
\operatorname{diag}\left(M_{2}^{\frac{1}{2}}\left(P_{1} \mu_{0}\right), \cdots, M_{2}^{\frac{1}{2}}\left(P_{m} \mu_{0}\right)\right) \\
M_{2}\left(P_{i} \mu_{0}\right):=\int_{\mathbb{R}^{m}}\left|x_{i}\right|^{2} d \mu_{0}(x)
\end{gathered}
$$

Theory

Given $\left\{\theta_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ and observations $\left\{\mu_{\theta_{i}}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{m}\right)$.
Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_{0} \in W_{2}$ (resp. discrete μ_{0}) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

$$
\left.\begin{array}{c}
\text { Translations } \\
\text { Dilations }
\end{array} \begin{array}{c}
\left\{\theta_{i}\right\} \\
\left.S \theta_{i}\right\}
\end{array}\right] \begin{gathered}
\operatorname{diag}\left(M_{2}^{\frac{1}{2}}\left(P_{1} \mu_{0}\right), \cdots, M_{2}^{\frac{1}{2}}\left(P_{m} \mu_{0}\right)\right) \\
M_{2}\left(P_{i} \mu_{0}\right):=\int_{\mathbb{R}^{m}}\left|x_{i}\right|^{2} d \mu_{0}(x)
\end{gathered}
$$

Remark: No proof currently for rotations (Brenier's Theorem)

Key Ingredients

$$
W_{2}\left(\mu_{0}(\cdot-t), \mu_{0}(\cdot-s)\right)=|t-s|
$$

Key Ingredients

$$
W_{2}\left(\mu_{0}(\cdot-t), \mu_{0}(\cdot-s)\right)=|t-s|
$$

$$
\begin{aligned}
W_{2}\left(\operatorname{det}\left(D_{\theta}\right) \mu\left(D_{\theta} \cdot\right), \operatorname{det}\left(D_{\theta^{\prime}}\right) \mu_{0}\left(D_{\theta^{\prime}} \cdot\right)\right)^{2} & =\sum_{i=1}^{m}\left|\vartheta_{i}-\vartheta_{i}^{\prime}\right|^{2} \int_{\mathbb{R}^{m}}\left|x_{i}\right|^{2} d \mu_{0} \\
& =\left|S \theta-S \theta^{\prime}\right|^{2}
\end{aligned}
$$

Key Ingredients

$$
W_{2}\left(\mu_{0}(\cdot-t), \mu_{0}(\cdot-s)\right)=|t-s|
$$

$$
\begin{aligned}
W_{2}\left(\operatorname{det}\left(D_{\theta}\right) \mu\left(D_{\theta} \cdot\right), \operatorname{det}\left(D_{\theta^{\prime}}\right) \mu_{0}\left(D_{\theta^{\prime}} \cdot\right)\right)^{2} & =\sum_{i=1}^{m}\left|\vartheta_{i}-\vartheta_{i}^{\prime}\right|^{2} \int_{\mathbb{R}^{m}}\left|x_{i}\right|^{2} d \mu_{0} \\
& =\left|S \theta-S \theta^{\prime}\right|^{2}
\end{aligned}
$$

Theorem: If $W_{2}\left(\mu_{\theta}, \mu_{\theta^{\prime}}\right)=f\left(\theta, \theta^{\prime}\right)$ for absolutely continuous μ_{0}, and T_{θ} are uniformly Lipschitz, then the same holds for arbitrary μ_{0}.

On Computation

Using fast W_{2} approximations

On Computation

Naïvely requires $O\left(N^{2}\right)$ Wasserstein computations

On Computation

Naïvely requires $O\left(N^{2}\right)$ Wasserstein computations

- In many cases can use LOT to reduce to $O(N)$ computations [Moosmüller, Cloninger '20], [Khurana et al. '22]

On Computation

Naïvely requires $O\left(N^{2}\right)$ Wasserstein computations

- In many cases can use LOT to reduce to $O(N)$ computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance

On Computation

Naïvely requires $O\left(N^{2}\right)$ Wasserstein computations

- In many cases can use LOT to reduce to $O(N)$ computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance
- Can use Nyström method to reduce to $O(N \log N)$ computations

On Computation

Naïvely requires $O\left(N^{2}\right)$ Wasserstein computations

- In many cases can use LOT to reduce to $O(N)$ computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance
- Can use Nyström method to reduce to $O(N \log N)$ computations

Nystrom Method

Theorem (Cloninger-H-Khurana-Moosmüller, '22+)

Let $\left\{\mu_{i}\right\}_{i=1}^{N} \subset W_{2}\left(\mathbb{R}^{n}\right)$. Suppose $\mathcal{W} \subset W_{2}\left(\mathbb{R}^{n}\right)$ is a subset of
Wasserstein space that is isometric to a subset of Euclidean space $\Omega \subset \mathbb{R}^{d}$, and $\left\{\nu_{i}\right\}_{i=1}^{N} \subset \mathcal{W}$ and $\left\{y_{i}\right\} \subset \Omega$ are such that
$\left|y_{i}-y_{j}\right|=W_{2}\left(\nu_{i}, \nu_{j}\right)$. Let $\Delta_{i j}:=W_{2}\left(\nu_{i}, \nu_{j}\right)^{2}, \Gamma_{i j}:=W_{2}\left(\mu_{i}, \mu_{j}\right)^{2}$, and
$\Lambda_{i j}:=\lambda_{i j}^{2}$ for some $\lambda_{i j} \in \mathbb{R}$. Let z_{i} be the output of MDS on \wedge.
If $\left|W_{2}\left(\mu_{i}, \mu_{j}\right)^{2}-W_{2}\left(\nu_{i}, \nu_{j}\right)^{2}\right| \leq \tau_{1}$ and $\left|W_{2}\left(\mu_{i}, \mu_{j}\right)^{2}-\lambda_{i j}^{2}\right| \leq \tau_{2}$ for some
τ_{1} and τ_{2}, and if

$$
\begin{equation*}
\left\|Y^{\dagger}\right\| \sqrt{N}\left(\tau_{1}+\tau_{2}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}}, \tag{1}
\end{equation*}
$$

then $\left\{z_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{d}$ satisfies

$$
\min _{Q \in \mathcal{O}(d)}\|Z-Y Q\|_{F} \leq(1+\sqrt{2})\left\|Y^{\dagger}\right\| N\left(\tau_{1}+\tau_{2}\right) .
$$

- τ_{1} - how far the data is away from a Euclidean manifold in W_{2}
- τ_{2} - how well the W_{2} distances are estimated (can be done via entropic regularization or linear optimal transport, e.g., Akram Aldroubi's talk)

Thanks!

