Mini-Course on Dimensionality Reduction and Manifold Learning Part 2: Nonlinear Dimensionality Reduction

Keaton Hamm University of Texas at Arlington

November 23, 2022

1/61

Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^m . (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^d for some d – this d is the same for the whole manifold and is it's dimension) Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^m . (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^d for some d – this d is the same for the whole manifold and is it's dimension)

Often an implicit (though sometimes explicit) hypothesis for Machine Learning methods, e.g., Deep Neural Network classifiers

Manifold Hypothesis: Data lies on (or near) a manifold \mathcal{M} embedded in \mathbb{R}^m . (Manifolds are topological spaces that are that locally homeomorphic to \mathbb{R}^d for some d – this d is the same for the whole manifold and is it's dimension)

Often an implicit (though sometimes explicit) hypothesis for Machine Learning methods, e.g., Deep Neural Network classifiers

More generally: data can come from union of manifolds

Problem 3: Preserve distance structure / geometry of data while significantly reducing the dimension

Given: $\{x_i\}_{i=1}^N \subset \mathcal{M} \ d$ -dimensional smooth manifold embedded in \mathbb{R}^D Find: $\phi : \mathbb{R}^D \to \mathbb{R}^m, \quad d \le m \ll D$ such that

 $|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)| \approx d_M(\mathbf{x}_i, \mathbf{x}_j).$

3

THE A THE

(4) (5) (4) (5)

Given: $X \subset \mathbb{R}^D$ that we suspect lies on a *d*-dimensional manifold \mathcal{M} (note *d* is a parameter here)

Given: $X \subset \mathbb{R}^D$ that we suspect lies on a *d*-dimensional manifold \mathcal{M} (note *d* is a parameter here)

Step 1: Estimate geodesic distances $D_{ij} \approx d_{\mathcal{M}}(x_i, x_j)$

4 3 5 4 3

Given: $X \subset \mathbb{R}^D$ that we suspect lies on a *d*-dimensional manifold \mathcal{M} (note *d* is a parameter here)

Step 1: Estimate geodesic distances $D_{ij} \approx d_{\mathcal{M}}(x_i, x_j)$

Step 2: Run MDS on *D* (i.e., $B = -\frac{1}{2}JD^{(2)}J$ and compute $B = V_d \Lambda_d V_d^T$) and set $y_i = (V_d \Lambda_d^{\frac{1}{2}})_{i:}$

Given: $X \subset \mathbb{R}^D$ that we suspect lies on a *d*-dimensional manifold \mathcal{M} (note *d* is a parameter here)

Step 1: Estimate geodesic distances $D_{ij} \approx d_{\mathcal{M}}(x_i, x_j)$

Step 2: Run MDS on *D* (i.e., $B = -\frac{1}{2}JD^{(2)}J$ and compute $B = V_d \Lambda_d V_d^T$) and set $y_i = (V_d \Lambda_d^{\frac{1}{2}})_{i:}$

The tricky part is Step 1

4 E N 4 E N

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Step 1: Make a graph G = (X, E, w) (e.g., ε -neighborhood or k-NN)

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 1: Make a graph G = (X, E, w) (e.g., ε -neighborhood or k-NN)

Step 2: Compute graph shortest path distances (sometimes called APSP, or All-Pairs Shortest Path in the theoretical CS literature)

Step 1: Make a graph G = (X, E, w) (e.g., ε -neighborhood or k-NN)

Step 2: Compute graph shortest path distances (sometimes called APSP, or All-Pairs Shortest Path in the theoretical CS literature)

Set $D_{ij} = d_G(x_i, x_j)$ – the expectation is that $d_G(x_i, x_j) \approx d_M(x_i, x_j)$

э

イロト イヨト イヨト イヨト

4 A N

Unfortunately, there are few principled ways to do this in general

Unfortunately, there are few principled ways to do this in general

Given data $\{x_i\}_{i=1}^n \subset \mathbb{R}^m$, set

 $V = \{x_1, \ldots, x_n\}$

Unfortunately, there are few principled ways to do this in general

Given data $\{x_i\}_{i=1}^n \subset \mathbb{R}^m$, set

$$V = \{x_1, \ldots, x_n\}$$

Many ways to define edges

Graphs From Data

Euclidean Graph – Connect all vertices to each other (complete graph); weights given by

$$w_{ij} := w(x_i, x_j) := |x_i - x_j|$$

.

Graphs From Data

Euclidean Graph – Connect all vertices to each other (complete graph); weights given by

$$w_{ij} := w(x_i, x_j) := |x_i - x_j|$$

 ε -neighborhood graph – At each vertex, place ball of radius ε > 0 and connect to vertices inside that ball

$$w_{ij}^{arepsilon} := egin{cases} |x_i - x_j|, & |x_i - x_j| \leq arepsilon \ \infty, & ext{otherwise.} \end{cases}$$

- E - - E -

Euclidean Graph – Connect all vertices to each other (complete graph); weights given by

$$w_{ij} := w(x_i, x_j) := |x_i - x_j|$$

 ε -neighborhood graph – At each vertex, place ball of radius ε > 0 and connect to vertices inside that ball

$$w_{ij}^{arepsilon} := egin{cases} |x_i - x_j|, & |x_i - x_j| \leq arepsilon \ \infty, & ext{otherwise.} \end{cases}$$

k–Nearest Neighbors (kNN) graph – For i = 1, ..., n, let K_i be the set of *k* nearest neighbors of x_i (nearness determined by Euclidean distance).

7/61

イロン イ理 とくほ とくほ とう

Euclidean Graph – Connect all vertices to each other (complete graph); weights given by

$$w_{ij} := w(x_i, x_j) := |x_i - x_j|$$

 ε -neighborhood graph – At each vertex, place ball of radius ε > 0 and connect to vertices inside that ball

$$w_{ij}^{arepsilon} := egin{cases} |x_i - x_j|, & |x_i - x_j| \leq arepsilon \ \infty, & ext{otherwise.} \end{cases}$$

k–Nearest Neighbors (kNN) graph – For i = 1, ..., n, let K_i be the set of *k* nearest neighbors of x_i (nearness determined by Euclidean distance).

Connect $x_i \sim x_j$ with an edge of weight $|x_i - x_j|$ if $x_j \in K_i$.

A B > A B >

Graphs From Data

Mutual kNN graph – $x_i \sim x_j$ iff $x_i \in K_j$ and $x_j \in K_i$

æ

Mutual kNN graph – $x_i \sim x_j$ iff $x_i \in K_j$ and $x_j \in K_i$

Gaussian weighted graph - Fully connected with weights

$$w^{\sigma}_{ij}:=e^{-rac{|x_i-x_j|^2}{\sigma^2}}$$

BA 4 BA

Mutual kNN graph – $x_i \sim x_j$ iff $x_i \in K_j$ and $x_j \in K_i$

Gaussian weighted graph - Fully connected with weights

$$oldsymbol{w}_{ij}^{\sigma}:=oldsymbol{e}^{-rac{|x_i-x_j|^2}{\sigma^2}}$$

Note: σ , ε , and *k* are parameters that must be chosen. Poor choices can lead to bad results

ISOMAP Redux:

Step 1: Form a graph from the given data

Step 2: Compute APSP and set $D_{ij} = d_G(x_i, x_j)$

Step 3: Run MDS on *D* and set $y_i = (V_d \Lambda_d^{\frac{1}{2}})_{i:}$

э

4 E N 4 E N

< < >>

ISOMAP Redux:

Step 1: Form a graph from the given data

Step 2: Compute APSP and set $D_{ij} = d_G(x_i, x_j)$

Step 3: Run MDS on *D* and set $y_i = (V_d \Lambda_d^{\frac{1}{2}})_{i:}$

Parameters: d – embedding dimension, and ε or k (for neighborhood graph)

э

4 1 1 4 1 1 1

ISOMAP Redux:

Step 1: Form a graph from the given data

Step 2: Compute APSP and set $D_{ij} = d_G(x_i, x_j)$

Step 3: Run MDS on *D* and set $y_i = (V_d \Lambda_d^{\frac{1}{2}})_{i:}$

Parameters: d – embedding dimension, and ε or k (for neighborhood graph)

Also note: we need a large sampling of the manifold to ensure that $d_G \approx d_{\mathcal{M}}$

э.

ISOMAP

Measuring success is difficult, so ISOMAP is often used as exploratory analysis

э

A B F A B F

ISOMAP

Measuring success is difficult, so ISOMAP is often used as exploratory analysis

November 23, 2022 1

K. Hamm

Nonlinear Dim. Reduction

November 23, 2022 12/61

æ

<ロ> <四> <ヨ> <ヨ>

If one knows $d_{\mathcal{M}}(x_i, x_j)$ and \mathcal{M} is isometric up to a constant to $\Omega \subset \mathbb{R}^d$, then ISOMAP using the manifold distances is MDS on these, and hence the embedding satisfies $|y_i - y_j| = cd_{\mathcal{M}}(x_i, x_j)$.

4 3 5 4 3

If one knows $d_{\mathcal{M}}(x_i, x_j)$ and \mathcal{M} is isometric up to a constant to $\Omega \subset \mathbb{R}^d$, then ISOMAP using the manifold distances is MDS on these, and hence the embedding satisfies $|y_i - y_j| = cd_{\mathcal{M}}(x_i, x_j)$.

In general we need to understand

- How well $d_{G^{\varepsilon}}$ approximates $d_{\mathcal{M}}$
- Perturbations of MDS embeddings

Theorem (Bernstein et al. '00, Arias-Castro and Le Gouic. '17)

Let $\mathcal{M} \subset \mathbb{R}^D$ be a smooth, compact manifold with reach r. Suppose $X = \{x_i\} \subset \mathcal{M}$ is a δ -sampling of \mathcal{M} . If G^{ε} is an ε -neighborhood graph over X and $\varepsilon < r$, then

$$\left(1-c_0\left(rac{arepsilon}{r}
ight)^2
ight)d_{\mathcal{M}}(x_i,x_j)\leq d_{G^arepsilon}(x_i,x_j)\leq \left(1+c_0\left(rac{\delta}{arepsilon}
ight)^2
ight)d_{\mathcal{M}}(x_i,x_j)$$

• δ -sampling: for every $x \in \mathcal{M}$, $d_{\mathcal{M}}(x, x_i) \leq \delta$ for some x_i

 reach: sup of t ≥ 0 such that every point at distance t away from *M* has a unique closest point in *M*

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Arias-Castro, Javanmard, Pelletier, '20)

Let $y_1, \ldots, y_N \in \mathbb{R}^d$ be centered, span \mathbb{R}^d , and set $\Delta_{ij} = |y_i - y_j|^2$. Let $\{\Lambda_{ij}\}_{i,j=1}^N$ be arbitrary real numbers. If $||Y^{\dagger}|| ||\Lambda - \Delta||_F^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}}$, then MDS with input $\{\Lambda_{i,j}\}$ and embedding dimension d returns a point set $z_1, \ldots, z_N \in \mathbb{R}^d$ satisfying

$$\min_{Q\in\mathcal{O}(d)}\|Z-YQ\|_{\mathcal{F}}\leq (1+\sqrt{2})\|Y^{\dagger}\|\|\Lambda-\Delta\|_{\mathcal{F}}.$$
Theorem (Arias-Castro et al. '20)

Let \mathcal{M} be as before and isometric to a convex subset of \mathbb{R}^d . Let $\xi = c_0 \max\left\{\left(\frac{\varepsilon}{r}\right)^2, \left(\frac{\delta}{\varepsilon}\right)^2\right\}$. Let $\{y_i\} \subset \mathbb{R}^d$ be an exact centered embedding of $\{x_i\} \subset \mathcal{M}$. If $\xi \leq \frac{1}{24}(\|Y\| \|Y^{\dagger}\|)^{-2}$, then ISOMAP returns points $\{z_i\} \subset \mathbb{R}^d$ such that

$$\min_{Q\in\mathcal{O}(d)}\|Z-YQ\|_{F}\leq 36\sqrt{d}\|Y\|^{3}\|Y^{\dagger}\|^{2}\xi.$$

Note: For fixed ε , small ξ corresponds to small reach and small δ (denser sampling) so that graph geodesics more closely approximate manifold geodesics.

Corollary

Let $\{x_i\}_{i=1}^N \subset \mathbb{R}^D$ be arbitrary. Suppose $\mathcal{M} \subset \mathbb{R}^D$ is isometric to $\Omega \subset \mathbb{R}^d$, and $\{\hat{x}_i\}_{i=1}^N \subset \mathcal{M}$ and $\{y_i\} \subset \Omega$ are such that $|y_i - y_j| = |\hat{x}_i - \hat{x}_j|$. Let $\Delta_{ij} := d_{\mathcal{M}}(\hat{x}_i, \hat{x}_j)^2$, $\Gamma_{ij} := |x_i - x_j|^2$, and $\Lambda_{ij} := \lambda_{ij}^2$ for some $\lambda_{ij} \in \mathbb{R}$. Let z_i be the points given by MDS with embedding dimension d from Λ . If $|\Gamma_{ij} - \Delta_{ij}| \le \tau_1$ and $|\Delta_{ij} - \Lambda_{ij}| \le \tau_2$, and if

$$\| \mathbf{Y}^{\dagger} \| \sqrt{N} \left(\tau_1 + \tau_2 \right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}},$$

then $\{z_i\}_{i=1}^N \subset \mathbb{R}^d$ satisfies

$$\min_{\boldsymbol{Q}\in\mathcal{O}(d)} \|\boldsymbol{Z}-\boldsymbol{Y}\boldsymbol{Q}\|_{F} \leq (1+\sqrt{2})\|\boldsymbol{Y}^{\dagger}\|\boldsymbol{N}(\tau_{1}+\tau_{2}).$$

- τ_1 how far away $\{x_i\}$ is away from the manifold samples
- τ₂ how well geodesics are estimated

17/61

Now we will take a look at some similar methods:

- Local Linear Embedding (LLE) [Roweis and Saul '00]
- Laplacian Eigenmaps [Belkin and Niyogi, '03]
- Diffusion Maps [Coifman and Lafon, '06]

э

Step 1: For all $x \in X$, compute the *k* nearest neighbors of $X, N_x^k \subset X$

Step 1: For all $x \in X$, compute the k nearest neighbors of X, $N_x^k \subset X$

Step 2: For all $x_i \in X$, compute weights to best linearly reconstruct x from points in $N_{x_i}^k$:

$$\min_{w_{ij}} \|x - \sum_{j: x_j \in \mathcal{N}_{x_j}^k} w_{ij} x_j \|_2^2$$

Step 1: For all $x \in X$, compute the *k* nearest neighbors of $X, N_x^k \subset X$

Step 2: For all $x_i \in X$, compute weights to best linearly reconstruct x from points in $N_{x_i}^k$:

$$\min_{w_{ij}} \|x - \sum_{j:x_j \in \mathcal{N}_{x_j}^k} w_{ij}x_j\|_2^2$$

Step 3: Compute embedding coordinates *Y* as follows: compute the SVD of $(I - W)^T (I - W) = V \Sigma V^T$, let V'_{N-d-1} contain columns $V_{:,N-d-1}, \ldots, V_{:,N-1}$ (so we ignore the eigenvalue corresponding to $\lambda_N = 0$), and let $Y_i := V'_{i,N-d-1}$

19/61

LLE is a local method – it reconstructs points via their nearest neighbors, then uses the graph structure of the weight matrix to find the embedding. This preserves high-dimensional neighborhoods in the embedding LLE is a local method – it reconstructs points via their nearest neighbors, then uses the graph structure of the weight matrix to find the embedding. This preserves high-dimensional neighborhoods in the embedding

LLE is more computationally efficient than ISOMAP (only deal with small neighborhoods of each point rather than estimating global geodesics)

A B F A B F

K. Hamm

Recall given G = (V, E, w), D – degree matrix, $W = \{w_{ij}\}$ – weight matrix

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Recall given G = (V, E, w), D – degree matrix, $W = \{w_{ij}\}$ – weight matrix

The Unnormalized Graph Laplacian of G is

$$L = D - W$$

э

Recall given G = (V, E, w), D – degree matrix, $W = \{w_{ij}\}$ – weight matrix

The Unnormalized Graph Laplacian of G is

$$L = D - W$$

The Symmetric, Normalized Graph Laplacian of G is

$$L_{\text{sym}} := D^{-\frac{1}{2}} L D^{\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{\frac{1}{2}}$$

Recall given G = (V, E, w), D – degree matrix, $W = \{w_{ij}\}$ – weight matrix

The Unnormalized Graph Laplacian of G is

$$L = D - W$$

The Symmetric, Normalized Graph Laplacian of G is

$$L_{\text{sym}} := D^{-\frac{1}{2}} L D^{\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{\frac{1}{2}}$$

The Random Walk Graph Laplacian of G is

$$L_{\rm rw} := D^{-1}L = I - D^{-1}W$$

< □ > < 同 > < 回 > < 回 > .

Theorem

The following hold:

• $\forall x \in \mathbb{R}^n$,

$$\langle L_{\text{sym}}x,x\rangle = \frac{1}{2}\sum_{i,j=1}^{n}w_{ij}\left(\frac{x_i}{\sqrt{d_i}}-\frac{x_j}{\sqrt{d_j}}\right)^2$$

- L_{sym} and L_{rw} are SPSD
- (λ, u) is an eigenpair of L_{rw} iff $(\lambda, D^{\frac{1}{2}}u)$ is an eigenpair of L_{sym}
- (0, 1) is an eigenpair of L_{rw}. Hence (0, D^{1/2}1) is an eigenpair of L_{sym}.

ヨトイヨト

Laplacian Eigenmaps [Belkin and Nyogi, '03]

Parameters: ε/k for neibhborhood graph, d – embedding dimension

.

4 D b 4 A b

l

Parameters: ε/k for neibhborhood graph, d – embedding dimension Step 1: Create ε -neighborhood or k-NN graph over X, but weight edges as

$$\mathbf{w}_{ij} = \mathbf{e}^{-rac{|x_i-x_j|_2^2}{\sigma^2}}, \quad (i,j) \in \mathbf{E}.$$

A B A A B A

Parameters: ε/k for neibhborhood graph, d – embedding dimension Step 1: Create ε -neighborhood or k-NN graph over X, but weight edges as

$$w_{ij}=e^{-rac{|x_i-x_j|_2^2}{\sigma^2}},\quad (i,j)\in E.$$

Step 2: For each connected component of *G*, solve the generalized eigenvalue problem

$$Lx = \lambda Dx, \quad (L = D - W)$$

Step 3: Embedded points are

$$y_i = V'_{i,N-d-1}$$

(as in LLE)

4 3 > 4 3

Image: A matrix

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$\mathbb{P}[X(t+1) = j \mid X(t) = i] = \frac{w_{ij}}{d_i}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$\mathbb{P}[X(t+1)=j\mid X(t)=i]=\frac{w_{ij}}{d_i}$$

$$M_{ij} := \frac{w_{ij}}{d_i} \Rightarrow M = D^{-1}W$$

A D M A A A M M

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$\mathbb{P}[X(t+1) = j \mid X(t) = i] = \frac{w_{ij}}{d_i}$$

$$M_{ij} := \frac{w_{ij}}{d_i} \Rightarrow M = D^{-1}W$$

Now suppose we start a walk at node *i* and look at where we get at time *t*

- A B M A B M

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$\mathbb{P}[X(t+1) = j \mid X(t) = i] = \frac{w_{ij}}{d_i}$$

$$M_{ij} := \frac{w_{ij}}{d_i} \Rightarrow M = D^{-1}W$$

Now suppose we start a walk at node *i* and look at where we get at time *t*

$$\mathbb{P}[X(t) = j \mid X(0) = i] = (M^t)_{ij}$$

Start with a graph as before. Consider a random walk on the graph, with transition probabilities

$$\mathbb{P}[X(t+1) = j \mid X(t) = i] = \frac{w_{ij}}{d_i}$$

$$M_{ij} := \frac{w_{ij}}{d_i} \Rightarrow M = D^{-1}W$$

Now suppose we start a walk at node *i* and look at where we get at time *t*

$$\mathbb{P}[X(t) = j \mid X(0) = i] = (M^t)_{ij}$$

Thus the "probability cloud" of points with their probabilities of the random walker at time *t* is the row $M_{i:}^{t}$

Note: we could very well represent the graph by $M_{i:}^t$, but this would have embedding dimension n = |V|, which isn't good. So let's keep working.

A B K A B K

A D b 4 A b

Note: we could very well represent the graph by $M_{i:}^t$, but this would have embedding dimension n = |V|, which isn't good. So let's keep working.

$$M_s := D^{\frac{1}{2}} M D^{-\frac{1}{2}} = V \Lambda V^T$$

A B F A B F

Note: we could very well represent the graph by $M_{i:}^t$, but this would have embedding dimension n = |V|, which isn't good. So let's keep working.

$$M_s := D^{\frac{1}{2}} M D^{-\frac{1}{2}} = V \wedge V^T$$

Note:

$$M = D^{-\frac{1}{2}} M_s D^{\frac{1}{2}} = D^{-\frac{1}{2}} V \wedge V^T D^{\frac{1}{2}} = \left(D^{-\frac{1}{2}} V \right) \wedge \left(D^{\frac{1}{2}} V \right)^T =: \Phi \wedge \Psi^T.$$

A B b 4 B b

Note: we could very well represent the graph by $M_{i:}^t$, but this would have embedding dimension n = |V|, which isn't good. So let's keep working.

$$M_{s} := D^{\frac{1}{2}} M D^{-\frac{1}{2}} = V \Lambda V^{T}$$

Note:

$$M = D^{-\frac{1}{2}} M_s D^{\frac{1}{2}} = D^{-\frac{1}{2}} V \wedge V^T D^{\frac{1}{2}} = \left(D^{-\frac{1}{2}} V \right) \wedge \left(D^{\frac{1}{2}} V \right)^T =: \Phi \wedge \Psi^T.$$

Note: Φ , Ψ form a biorthogonal system – i.e., $\Psi^T \Phi = \Phi^T \Psi = I$, equivalently $\phi_i^T \psi_j = \delta_{ij}$

Note: we could very well represent the graph by $M_{i:}^t$, but this would have embedding dimension n = |V|, which isn't good. So let's keep working.

$$M_{s} := D^{\frac{1}{2}} M D^{-\frac{1}{2}} = V \Lambda V^{T}$$

Note:

$$M = D^{-\frac{1}{2}} M_s D^{\frac{1}{2}} = D^{-\frac{1}{2}} V \Lambda V^T D^{\frac{1}{2}} = \left(D^{-\frac{1}{2}} V \right) \Lambda \left(D^{\frac{1}{2}} V \right)^T =: \Phi \Lambda \Psi^T.$$

Note: Φ , Ψ form a biorthogonal system – i.e., $\Psi^T \Phi = \Phi^T \Psi = I$, equivalently $\phi_i^T \psi_j = \delta_{ij}$ Also,

$$\boldsymbol{M}\phi_{\boldsymbol{k}} = \lambda_{\boldsymbol{k}}\phi_{\boldsymbol{k}}, \qquad \psi_{\boldsymbol{k}}^{\mathsf{T}}\boldsymbol{M} = \lambda_{\boldsymbol{k}}\phi_{\boldsymbol{k}}^{\mathsf{T}}$$

From $M = \Phi \Lambda \Psi^T$,

$$\boldsymbol{M} = \sum_{i=1}^{n} \lambda_i \phi_i \psi_i^{\mathsf{T}}$$

æ

イロト イポト イヨト イヨト

From $M = \Phi \Lambda \Psi^T$,

$$\boldsymbol{M} = \sum_{i=1}^{n} \lambda_i \phi_i \psi_i^{\mathsf{T}}$$

Thus

$$M^t = \sum_{i=1}^n \lambda_i^t \phi_i \psi_i^T$$

æ

From $M = \Phi \Lambda \Psi^T$,

$$M = \sum_{i=1}^{n} \lambda_i \phi_i \psi_i^T$$

Thus

$$M^t = \sum_{i=1}^n \lambda_i^t \phi_i \psi_i^T$$

Back to our suggestion before:

$$M_{k:}^{t} = \sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i}(k) \psi_{i}^{T}$$

★ ∃ > < ∃ >

From $M = \Phi \Lambda \Psi^T$,

$$\boldsymbol{M} = \sum_{i=1}^{n} \lambda_i \phi_i \psi_i^{\mathsf{T}}$$

Thus

$$M^t = \sum_{i=1}^n \lambda_i^t \phi_i \psi_i^T$$

Back to our suggestion before:

$$M_{k:}^{t} = \sum_{i=1}^{n} \lambda_{i}^{t} \phi_{i}(k) \psi_{i}^{T}$$

So we can represent node v_i in terms of the basis Ψ , and put

$$\mathbf{v}_i \mapsto \begin{bmatrix} \lambda_1^t \phi_1(i) \\ \vdots \\ \lambda_n^t \phi_n(i) \end{bmatrix}$$

4 D b 4 A b

Note that $M\mathbb{1} = \mathbb{1}$, and $\phi_1 = \mathbb{1}$ with $\lambda_1 = 1$ by previous analysis (note that $M = D^{-1}W = I - L_{rw}$)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that $M\mathbb{1} = \mathbb{1}$, and $\phi_1 = \mathbb{1}$ with $\lambda_1 = 1$ by previous analysis (note that $M = D^{-1}W = I - L_{rw}$) Thus ϕ_n doesn't tell us any information, so we define the diffusion map $\phi_t : V \to \mathbb{R}^{n-1}$ via

$$\mathbf{v}_i \mapsto \begin{bmatrix} \lambda_2^t \phi_1(i) \\ \vdots \\ \lambda_n^t \phi_n(i) \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that $M\mathbb{1} = \mathbb{1}$, and $\phi_1 = \mathbb{1}$ with $\lambda_1 = 1$ by previous analysis (note that $M = D^{-1}W = I - L_{rw}$) Thus ϕ_n doesn't tell us any information, so we define the diffusion map $\phi_t : V \to \mathbb{R}^{n-1}$ via

$$\mathbf{v}_i \mapsto \begin{bmatrix} \lambda_2^t \phi_1(i) \\ \vdots \\ \lambda_n^t \phi_n(i) \end{bmatrix}$$

Similar to other methods, the truncated diffusion map is $\phi_t^{(d)}: V \to \mathbb{R}^d$ via

$$\phi_t^{(d)}(\mathbf{v}_i) = \begin{bmatrix} \lambda_2^t \phi_2(i) \\ \vdots \\ \lambda_{d+1}^t \phi_{d+1}(i) \end{bmatrix} = (\Lambda_{d+1}')^t (\Phi_{d+1}')_{i:t}$$
Useful Property: Diffusion maps give a measure of distance between probability clouds after time *t* for walkers starting at different nodes:

Useful Property: Diffusion maps give a measure of distance between probability clouds after time *t* for walkers starting at different nodes:

Theorem

For any v_i, v_j

$$\|\phi_t(v_i) - \phi_t(v_j)\|_2^2 = \sum_{k=1}^n \frac{1}{d_k} \left(\mathbb{P}[X(t) = k \mid X(0) = i] - \mathbb{P}[X(t) = k \mid X(0) = j] \right)^2$$

A (10) A (10) A (10)

Algorithm

Step 1: Form graph (ε -neighborhood or k-NN) Step 2: $M = \Phi \Lambda \Psi^T$ Step 3: Diffusion map: $\phi_t : V \to \mathbb{R}^d$ as above

Parameters: ε/k , t

E 5 4 E

Question: So how are Diffusion Maps and Laplacian Eigenmaps different?

(4) (5) (4) (5)

Question: So how are Diffusion Maps and Laplacian Eigenmaps different?

• DM uses *L*_{rw} and its eigenvectors, wheras LE uses *L* and its eigenvectors.

(4) The (b)

A D b 4 A b

Question: So how are Diffusion Maps and Laplacian Eigenmaps different?

- DM uses *L*_{rw} and its eigenvectors, wheras LE uses *L* and its eigenvectors.
- DM uses scaling by powers of λ_i which represents a random walk diffusing over the graph (note: $|\lambda_i| \le 1$ for all eigenvalues of *M*, so diffusion maps don't blow up)

November 23, 2022 33/61

K. Hamm

Nonlinear Dim. Reduction

November 23, 2022 34/61

æ

Part III: Functional Manifold Learning

æ

< E

∃ >

Image: A matrix

Image Manifold Learning Pipeline

$\mathscr{F} \xrightarrow{\mathcal{H}} \mathbb{R}^{D} \xrightarrow{\phi} \mathbb{R}^{d} \xrightarrow{\mathcal{D}} \Lambda$

э.

イロン イ理 とく ヨン イヨン

Image Manifold Learning Pipeline

$$\mathscr{F} \xrightarrow{\mathcal{H}} \mathbb{R}^{D} \xrightarrow{\phi} \mathbb{R}^{d} \xrightarrow{\mathcal{D}} \Lambda$$

- F = image space
- Λ = decision/label space
- $\mathcal{H}:\mathscr{F}\to\mathbb{R}^D$ = imaging/discretization operator
- $\phi : \mathbb{R}^D \to \mathbb{R}^d$ = dimensionality reduction operator
- $\mathcal{D}: \mathbb{R}^d \to \Lambda$ = decision operator

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

- Ignores F
- Ignores discretization process / imaging operation, which can vary greatly
- Treats preprocessing as a black box

Often one thinks of the manifold hypothesis as images are in $\mathcal{M} \subset \mathbb{R}^{D}$.

Issues:

- Ignores F
- Ignores discretization process / imaging operation, which can vary greatly
- Treats preprocessing as a black box

Now we will take a Functional Manifold Hypothesis: $\mathcal{M} \subset \mathscr{F}$

What's in a distance?

November 23, 2022 38/61

æ

What's in a distance?

If we treat images as Euclidean, pixelwise (ℓ_2) distances can be meaningless

What function space should we consider as \mathscr{F} ?

 $\mathcal{M} \subset L_2(\mathbb{R}^m)$

Question: Given two samples from \mathscr{F} , how can we estimate the geodesic distance between them?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{M} \subset L_2(\mathbb{R}^m)$

Question: Given two samples from \mathscr{F} , how can we estimate the geodesic distance between them?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{M} \subset L_2(\mathbb{R}^m)$

Question: Given two samples from \mathscr{F} , how can we estimate the geodesic distance between them?

Option 1: Use the *induced intrinsic metric* on \mathscr{F} induced by the ambient L_2 norm

 $\mathcal{M} \subset L_2(\mathbb{R}^m)$

Question: Given two samples from \mathscr{F} , how can we estimate the geodesic distance between them?

Option 1: Use the *induced intrinsic metric* on \mathscr{F} induced by the ambient L_2 norm

 $\Gamma(f_i, f_j)$ = set of all continuous paths $\gamma : [0, 1] \rightarrow L_2$ such that $\gamma(0) = f_i, \gamma(1) = f_j$

$$d_{\mathscr{F},L_2}(f_i,f_j) := \inf_{\gamma \in \Gamma(f_i,f_j)} L(\gamma) = \inf_{\gamma \in \Gamma(f_i,f_j)} \sup_{t_0,\ldots,t_m} \sum_{k=1}^m \|\gamma(t_{k-1}) - \gamma(t_k)\|_{L_2}$$

- Geodesics based on || · ||_{L2} blow up unexpectedly (translates of an indicator of a ball)
- One workaround is to mollify functions with Gaussians of decreasing width and normalize by a reference trajectory

3 > 4 3

Consider $\mathscr{F}^{\text{transl}} := \{ f_0(\cdot - t), t \in \alpha \mathbb{Z}^2 \} \subset L_2(\mathbb{R}^2) \text{ with } f_0 = \mathbb{1}_D$

(日)

Consider $\mathscr{F}^{\text{transl}} := \{ f_0(\cdot - t), t \in \alpha \mathbb{Z}^2 \} \subset L_2(\mathbb{R}^2) \text{ with } f_0 = \mathbb{1}_D$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider $\mathscr{F}^{\text{transl}} := \{ f_0(\cdot - t), t \in \alpha \mathbb{Z}^2 \} \subset L_2(\mathbb{R}^2) \text{ with } f_0 = \mathbb{1}_D$

Problem: pairwise distances are essentially constant

ĸ	ы	2r	n	\mathbf{m}
· / \.		a		

4 D b 4 A b

Theorem (Donoho, Grimes '05)

 $(\mathscr{F}^{transl}, d_{\mathscr{F},L_2})$ is isometric to $\Omega \subset \mathbb{R}^d$ if and only if f_0 is differentiable.

(日)

Option 2: View images as non-negative L_1 functions with compact support.

크

Option 2: View images as non-negative L_1 functions with compact support.

э

Option 2: View images as non-negative L_1 functions with compact support.

These can be naturally embedded into the space of probability measures as follows

$$\begin{split} \text{Map} \ (\mathscr{F}, d_{\mathscr{F}}) \subset (L_2, \|\cdot\|_{L_2}) \text{ into } \ (\widetilde{\mathscr{F}}, W_2) \subset (\mathcal{P}(\mathbb{R}^2), W_2) \\ f \mapsto \frac{f}{\|f\|_{L_1}} \end{split}$$

Main Idea: Optimal Transport. What is the optimal transport plan to map one probability distribution to another? (Monge, 1781)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea: Optimal Transport. What is the optimal transport plan to map one probability distribution to another? (Monge, 1781)

Given $\mu, \nu \in \mathcal{P}(\mathbb{R}^2)$, denote the space of couplings

 $\mathsf{\Pi}(\mu,\nu) := \{\pi \in \mathcal{P}(\mathbb{R}^4) : \pi(\mathbf{A} \times \mathbb{R}^2) = \mu(\mathbf{A}), \pi(\mathbb{R}^2 \times \mathbf{A}) = \nu(\mathbf{A}), \mathbf{A} \in \mathbb{R}^2\}$

K. Hamm

Nonlinear Dim. Reduction

November 23, 2022 45/61

The 2–Wasserstein metric is defined by

$$W_2^2(\mu,
u) := \min_{\pi \in \Pi(\mu,
u)} \int_{\mathbb{R}^{2d}} |x-y|^2 d\pi$$

A B b 4 B b

The 2–Wasserstein metric is defined by

$$W_2^2(\mu,
u) := \min_{\pi\in\Pi(\mu,
u)} \int_{\mathbb{R}^{2d}} |x-y|^2 d\pi$$

(e.g., Villani's book) 1) ($\mathcal{P}(\mathbb{R}^d)$, W_2) is a length space, 2) the optimal coupling π^* is equivalent to finding a transport map (change of variables) such that

 $f_j(T(x))|J_T(x)|=f_i(x)$

The 2–Wasserstein metric is defined by

$$W_2^2(\mu,
u) := \min_{\pi \in \Pi(\mu,
u)} \int_{\mathbb{R}^{2d}} |x-y|^2 d\pi$$

(e.g., Villani's book) 1) ($\mathcal{P}(\mathbb{R}^d)$, W_2) is a length space, 2) the optimal coupling π^* is equivalent to finding a transport map (change of variables) such that

$$f_j(T(x))|J_T(x)|=f_i(x)$$

Induces the displacement interpolant

$$T_t(x) := (1-t)x + tT(x)$$

The 2–Wasserstein metric is defined by

$$W_2^2(\mu,
u) := \min_{\pi\in\Pi(\mu,
u)} \int_{\mathbb{R}^{2d}} |x-y|^2 d\pi$$

(e.g., Villani's book) 1) ($\mathcal{P}(\mathbb{R}^d)$, W_2) is a length space, 2) the optimal coupling π^* is equivalent to finding a transport map (change of variables) such that

$$f_j(T(x))|J_T(x)|=f_i(x)$$

Induces the displacement interpolant

$$T_t(x) := (1-t)x + tT(x)$$

The 2–Wasserstein metric is defined by

$$W_2^2(\mu,
u) := \min_{\pi \in \Pi(\mu,
u)} \int_{\mathbb{R}^{2d}} |x-y|^2 d\pi$$

(e.g., Villani's book) 1) ($\mathcal{P}(\mathbb{R}^d)$, W_2) is a length space, 2) the optimal coupling π^* is equivalent to finding a transport map (change of variables) such that

$$f_j(T(x))|J_T(x)|=f_i(x)$$

Induces the displacement interpolant

$$T_t(x) := (1-t)x + tT(x)$$

Functional Wassmap¹

K. Hamm

Nonlinear Dim. Reduction

November 23, 2022 47/61

Image: A matrix
Functional Wassmap¹

Given $\{\mu_i\}_{i=1}^N \subset W_2(\mathbb{R}^m)$

- Compute $D = (W_2(\mu_i, \mu_j)^2)_{i,j=1}^N$
- APSP of neighborhood graph

MDS

Discrete Wassmap

Given $\{x_i\}_{i=1}^N \subset \mathbb{R}^D$

æ

(4) (5) (4) (5)

Discrete Wassmap

Given $\{x_i\}_{i=1}^N \subset \mathbb{R}^D$

Measure Formation

Functional Wassmap

Manifolds generated by transformations of a fixed measure

 $\Theta \subset \mathbb{R}^d$ some parameter set generating maps $T_{\theta} : \mathbb{R}^m \to \mathbb{R}^m$

$$\mathcal{M}(\mu_0,\Theta) := \{ T_{\theta \#} \mu_0 : \theta \in \Theta \}$$

E 5 4 E

Manifolds generated by transformations of a fixed measure

 $\Theta \subset \mathbb{R}^d$ some parameter set generating maps $T_{\theta} : \mathbb{R}^m \to \mathbb{R}^m$

$$\mathcal{M}(\mu_0,\Theta) := \{ T_{\theta \#} \mu_0 : \theta \in \Theta \}$$

$$T_{\#}\mu(\boldsymbol{A}) = \mu(T^{-1}(\boldsymbol{A}))$$

E 5 4 E

Manifolds generated by transformations of a fixed measure

 $\Theta \subset \mathbb{R}^d$ some parameter set generating maps $T_{\theta} : \mathbb{R}^m \to \mathbb{R}^m$

$$\mathcal{M}(\mu_0,\Theta):=\{\mathcal{T}_{\theta\#}\mu_0:\theta\in\Theta\}$$

$$T_{\#}\mu(\boldsymbol{A}) = \mu(T^{-1}(\boldsymbol{A}))$$

• Translation: $\{\mu_0(\cdot - \theta)\}$

- Dilation: {det(D_{θ}) $\mu_0(D_{\theta} \cdot$)} $D_{\theta} = \text{diag}(\frac{1}{\vartheta_1}, \dots, \frac{1}{\vartheta_m})$
- Rotation: $\{\mu_0(R_{\theta} \cdot) : R_{\theta} \in SO(m)\}$

EN 4 EN

Translation manifold
$$-\mu_0 = \frac{1}{\pi} \mathbb{1}_D(x) dx$$

K. Hamm

November 23, 2022

50/61

Translation manifold –
$$\mu_0=rac{1}{\pi}\mathbbm{1}_D(x)dx$$

51/61

Nonlinear Dim. Reduction

Dilation manifold $-\mu_0 = \frac{1}{\pi} \mathbb{1}_D(x) dx$

 ▶
 ■
 ■
 ■
 >
 ■
 >

 >

 >

 <th</th>
 <th</th>
 <th</th>
 <th<

< A

Dilation manifold $-\mu_0 = \frac{1}{\pi} \mathbb{1}_D(x) dx$

 ▶
 ■
 ■
 ■
 >
 ■
 >

 >

 >

 <th</th>
 <th</th>
 <th</th>
 <th<

< A

Rotation manifold – μ_0 indicator of origin centered ellipse

Nonlinear Dim. Reduction

K. Hamm

November 23, 2022

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Э.

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_0 \in W_2$ (resp. discrete μ_0) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_0 \in W_2$ (resp. discrete μ_0) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Translations $\{\theta_i\}$

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_0 \in W_2$ (resp. discrete μ_0) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Translations	$\{\theta_i\}$
Dilations	$\{S\theta_i\}$

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_0 \in W_2$ (resp. discrete μ_0) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

3

Given $\{\theta_i\}_{i=1}^N \subset \mathbb{R}^d$ and observations $\{\mu_{\theta_i}\}_{i=1}^N \subset W_2(\mathbb{R}^m)$.

Theorem[H-Henscheid-Kang,'22] For arbitrary $\mu_0 \in W_2$ (resp. discrete μ_0) Functional (resp. Discrete) Wassmap recovers up to rigid transformation

Translations Dilations	$\{ heta_i\}\ \{oldsymbol{\mathcal{S}} heta_i\}$
$S = \operatorname{diag}(M_2^{\frac{1}{2}}(P_1\mu_0)),$	$\cdots, M_2^{\frac{1}{2}}(P_m\mu_0))$
$M_2(P_i\mu_0):=\int_{\mathbb{R}^m}$	$ x_i ^2 d\mu_0(x)$

Remark: No proof currently for rotations (Brenier's Theorem)

K.	Hamm

$$W_2(\mu_0(\cdot - t), \mu_0(\cdot - s)) = |t - s|$$

æ

イロト イヨト イヨト イヨト

$$W_2(\mu_0(\cdot - t), \mu_0(\cdot - s)) = |t - s|$$

$$W_2(\det(D_\theta)\mu(D_{\theta'}),\det(D_{\theta'})\mu_0(D_{\theta'}\cdot))^2 = \sum_{i=1}^m |\vartheta_i - \vartheta_i'|^2 \int_{\mathbb{R}^m} |x_i|^2 d\mu_0$$

$$=|S heta-S heta'|^2$$

æ

イロト イヨト イヨト イヨト

$$W_2(\mu_0(\cdot - t), \mu_0(\cdot - s)) = |t - s|$$

$$W_2(\det(D_\theta)\mu(D_{\theta'}),\det(D_{\theta'})\mu_0(D_{\theta'}))^2 = \sum_{i=1}^m |\vartheta_i - \vartheta_i'|^2 \int_{\mathbb{R}^m} |x_i|^2 d\mu_0$$

$$=|S heta-S heta'|^2$$

Theorem: If $W_2(\mu_{\theta}, \mu_{\theta'}) = f(\theta, \theta')$ for absolutely continuous μ_0 , and T_{θ} are uniformly Lipschitz, then the same holds for arbitrary μ_0 .

ĸ	н	ar	m	m
		~		

November 23, 2022 57/61

Using fast W₂ approximations

Naïvely requires $O(N^2)$ Wasserstein computations

3 > 4 3

< 17 ▶

Naïvely requires $O(N^2)$ Wasserstein computations

 In many cases can use LOT to reduce to O(N) computations [Moosmüller, Cloninger '20], [Khurana et al. '22]

Naïvely requires $O(N^2)$ Wasserstein computations

- In many cases can use LOT to reduce to O(N) computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance

Naïvely requires $O(N^2)$ Wasserstein computations

- In many cases can use LOT to reduce to O(N) computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance
- Can use Nyström method to reduce to $O(N \log N)$ computations

Naïvely requires $O(N^2)$ Wasserstein computations

- In many cases can use LOT to reduce to O(N) computations [Moosmüller, Cloninger '20], [Khurana et al. '22]
- Sliced Wasserstein distance
- Can use Nyström method to reduce to $O(N \log N)$ computations

Nystrom Method

Theorem (Cloninger–H–Khurana–Moosmüller, '22+)

Let $\{\mu_i\}_{i=1}^N \subset W_2(\mathbb{R}^n)$. Suppose $\mathcal{W} \subset W_2(\mathbb{R}^n)$ is a subset of Wasserstein space that is isometric to a subset of Euclidean space $\Omega \subset \mathbb{R}^d$, and $\{\nu_i\}_{i=1}^N \subset \mathcal{W}$ and $\{y_i\} \subset \Omega$ are such that $|y_i - y_j| = W_2(\nu_i, \nu_j)$. Let $\Delta_{ij} := W_2(\nu_i, \nu_j)^2$, $\Gamma_{ij} := W_2(\mu_i, \mu_j)^2$, and $\Lambda_{ij} := \lambda_{ij}^2$ for some $\lambda_{ij} \in \mathbb{R}$. Let z_i be the output of MDS on Λ . If $|W_2(\mu_i, \mu_j)^2 - W_2(\nu_i, \nu_j)^2| \leq \tau_1$ and $|W_2(\mu_i, \mu_j)^2 - \lambda_{ij}^2| \leq \tau_2$ for some τ_1 and τ_2 , and if

$$\|\boldsymbol{Y}^{\dagger}\|\sqrt{N}\left(\tau_{1}+\tau_{2}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}},\tag{1}$$

then $\{z_i\}_{i=1}^N \subset \mathbb{R}^d$ satisfies

$$\min_{\boldsymbol{Q}\in\mathcal{O}(d)} \|\boldsymbol{Z}-\boldsymbol{Y}\boldsymbol{Q}\|_{F} \leq (1+\sqrt{2})\|\boldsymbol{Y}^{\dagger}\|\boldsymbol{N}(\tau_{1}+\tau_{2}).$$

- τ₁ how far the data is away from a Euclidean manifold in W₂
- τ₂ how well the W₂ distances are estimated (can be done via entropic regularization or linear optimal transport, e.g., Akram Aldroubi's talk)

K. Hamm

Thanks!

æ

・ロト ・ 四ト ・ ヨト ・ ヨト