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Manifold Hypothesis: Data lies on (or near) a manifold M embedded
in Rm. (Manifolds are topological spaces that are that locally
homeomorphic to Rd for some d – this d is the same for the whole
manifold and is it’s dimension)

Often an implicit (though sometimes explicit) hypothesis for Machine
Learning methods, e.g., Deep Neural Network classifiers

More generally: data can come from union of manifolds
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Problem 3: Preserve distance structure / geometry of data while
significantly reducing the dimension

Given: {xi}N
i=1 ⊂ M d-dimensional smooth manifold embedded in RD

Find: ϕ : RD → Rm, d ≤ m ≪ D such that

|ϕ(xi)− ϕ(xj)| ≈ dM(xi , xj).
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ISOMAP

The ISOMAP algorithm [Tenenbaum, de Silva, Langford, 2000]

Given: X ⊂ RD that we suspect lies on a d–dimensional manifold M
(note d is a parameter here)

Step 1: Estimate geodesic distances Dij ≈ dM(xi , xj)

Step 2: Run MDS on D (i.e., B = −1
2JD(2)J and compute

B = VdΛdV T
d ) and set yi = (VdΛ

1
2
d )i:

The tricky part is Step 1
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ISOMAP

Estimating geodesics:

Step 1: Make a graph G = (X ,E ,w) (e.g., ε–neighborhood or k–NN)

Step 2: Compute graph shortest path distances (sometimes called
APSP, or All-Pairs Shortest Path in the theoretical CS literature)

Set Dij = dG(xi , xj) – the expectation is that dG(xi , xj) ≈ dM(xi , xj)
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Graphs From Data

Fundamental Question: Given data structure, and a task, how do we
form a graph from the data to accomplish our task well?

Unfortunately, there are few principled ways to do this in general

Given data {xi}n
i=1 ⊂ Rm, set

V = {x1, . . . , xn}

Many ways to define edges
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Graphs From Data

Euclidean Graph – Connect all vertices to each other (complete
graph); weights given by

wij := w(xi , xj) := |xi − xj |

ε–neighborhood graph – At each vertex, place ball of radius ε > 0 and
connect to vertices inside that ball

wε
ij :=

{
|xi − xj |, |xi − xj | ≤ ε

∞, otherwise.

k–Nearest Neighbors (kNN) graph – For i = 1, . . . ,n, let Ki be the set
of k nearest neighbors of xi (nearness determined by Euclidean
distance).
Connect xi ∼ xj with an edge of weight |xi − xj | if xj ∈ Ki .
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Graphs From Data

Mutual kNN graph – xi ∼ xj iff xi ∈ Kj and xj ∈ Ki

Gaussian weighted graph – Fully connected with weights

wσ
ij := e−

|xi−xj |
2

σ2

Note: σ, ε, and k are parameters that must be chosen. Poor choices
can lead to bad results

K. Hamm Nonlinear Dim. Reduction November 23, 2022 8 / 61



Graphs From Data

Mutual kNN graph – xi ∼ xj iff xi ∈ Kj and xj ∈ Ki

Gaussian weighted graph – Fully connected with weights

wσ
ij := e−

|xi−xj |
2

σ2

Note: σ, ε, and k are parameters that must be chosen. Poor choices
can lead to bad results

K. Hamm Nonlinear Dim. Reduction November 23, 2022 8 / 61



Graphs From Data

Mutual kNN graph – xi ∼ xj iff xi ∈ Kj and xj ∈ Ki

Gaussian weighted graph – Fully connected with weights

wσ
ij := e−

|xi−xj |
2

σ2

Note: σ, ε, and k are parameters that must be chosen. Poor choices
can lead to bad results

K. Hamm Nonlinear Dim. Reduction November 23, 2022 8 / 61



ISOMAP

ISOMAP Redux:

Step 1: Form a graph from the given data

Step 2: Compute APSP and set Dij = dG(xi , xj)

Step 3: Run MDS on D and set yi = (VdΛ
1
2
d )i:

Parameters: d – embedding dimension, and ε or k (for neighborhood
graph)

Also note: we need a large sampling of the manifold to ensure that
dG ≈ dM
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ISOMAP

Measuring success is difficult, so ISOMAP is often used as exploratory
analysis
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Exact Embeddings

If one knows dM(xi , xj) and M is isometric up to a constant to Ω ⊂ Rd ,
then ISOMAP using the manifold distances is MDS on these, and
hence the embedding satisfies |yi − yj | = cdM(xi , xj).

In general we need to understand
How well dGε approximates dM

Perturbations of MDS embeddings
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Geodesic Approximation

Theorem (Bernstein et al. ’00, Arias-Castro and Le Gouic. ’17)

Let M ⊂ RD be a smooth, compact manifold with reach r . Suppose
X = {xi} ⊂ M is a δ–sampling of M. If Gε is an ε–neighborhood
graph over X and ε < r , then(

1 − c0

(ε
r

)2
)

dM(xi , xj) ≤ dGε(xi , xj) ≤

(
1 + c0

(
δ

ε

)2
)

dM(xi , xj)

δ–sampling: for every x ∈ M, dM(x , xi) ≤ δ for some xi

reach: sup of t ≥ 0 such that every point at distance t away from
M has a unique closest point in M
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MDS Perturbation Bound

Theorem (Arias-Castro, Javanmard, Pelletier, ’20)

Let y1, . . . , yN ∈ Rd be centered, span Rd , and set ∆ij = |yi − yj |2.
Let {Λij}N

i,j=1 be arbitrary real numbers.

If ∥Y †∥∥Λ−∆∥
1
2
F ≤ 1√

2
, then MDS with input {Λi,j} and embedding

dimension d returns a point set z1, . . . , zN ∈ Rd satisfying

min
Q∈O(d)

∥Z − YQ∥F ≤ (1 +
√

2)∥Y †∥∥Λ−∆∥F .
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ISOMAP Perturbation Bound

Theorem (Arias-Castro et al. ’20)

Let M be as before and isometric to a convex subset of Rd . Let
ξ = c0 max

{(
ε
r

)2
,
(
δ
ε

)2
}

. Let {yi} ⊂ Rd be an exact centered

embedding of {xi} ⊂ M. If ξ ≤ 1
24(∥Y∥∥Y †∥)−2, then ISOMAP returns

points {zi} ⊂ Rd such that

min
Q∈O(d)

∥Z − YQ∥F ≤ 36
√

d∥Y∥3∥Y †∥2ξ.

Note: For fixed ε, small ξ corresponds to small reach and small δ
(denser sampling) so that graph geodesics more closely approximate
manifold geodesics.
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Corollary

Let {xi}N
i=1 ⊂ RD be arbitrary. Suppose M ⊂ RD is isometric to

Ω ⊂ Rd , and {x̂i}N
i=1 ⊂ M and {yi} ⊂ Ω are such that

|yi − yj | = |x̂i − x̂j |.
Let ∆ij := dM(x̂i , x̂j)

2, Γij := |xi − xj |2, and Λij := λ2
ij for some λij ∈ R.

Let zi be the points given by MDS with embedding dimension d from Λ.
If |Γij −∆ij | ≤ τ1 and |∆ij − Λij | ≤ τ2, and if

∥Y †∥
√

N (τ1 + τ2)
1
2 ≤ 1√

2
,

then {zi}N
i=1 ⊂ Rd satisfies

min
Q∈O(d)

∥Z − YQ∥F ≤ (1 +
√

2)∥Y †∥N (τ1 + τ2) .

τ1 – how far away {xi} is away from the manifold samples
τ2 – how well geodesics are estimated
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More Nonlinear Dimensionality Reduction Methods!

Now we will take a look at some similar methods:
Local Linear Embedding (LLE) [Roweis and Saul ’00]
Laplacian Eigenmaps [Belkin and Niyogi, ’03]
Diffusion Maps [Coifman and Lafon, ’06]
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LLE

Parameters: k – number of neighbors, d –embedding dimension

Step 1: For all x ∈ X , compute the k nearest neighbors of X , Nk
x ⊂ X

Step 2: For all xi ∈ X , compute weights to best linearly reconstruct x
from points in Nk

xi
:

min
wij

∥x −
∑

j:xj∈Nk
xi

wijxj∥2
2

Step 3: Compute embedding coordinates Y as follows: compute the
SVD of (I − W )T (I − W ) = VΣV T , let V ′

N−d−1 contain columns
V:,N−d−1, . . . ,V:,N−1 (so we ignore the eigenvalue corresponding to
λN = 0), and let Yi := V ′

i,N−d−1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 19 / 61



LLE

Parameters: k – number of neighbors, d –embedding dimension

Step 1: For all x ∈ X , compute the k nearest neighbors of X , Nk
x ⊂ X

Step 2: For all xi ∈ X , compute weights to best linearly reconstruct x
from points in Nk

xi
:

min
wij

∥x −
∑

j:xj∈Nk
xi

wijxj∥2
2

Step 3: Compute embedding coordinates Y as follows: compute the
SVD of (I − W )T (I − W ) = VΣV T , let V ′

N−d−1 contain columns
V:,N−d−1, . . . ,V:,N−1 (so we ignore the eigenvalue corresponding to
λN = 0), and let Yi := V ′

i,N−d−1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 19 / 61



LLE

Parameters: k – number of neighbors, d –embedding dimension

Step 1: For all x ∈ X , compute the k nearest neighbors of X , Nk
x ⊂ X

Step 2: For all xi ∈ X , compute weights to best linearly reconstruct x
from points in Nk

xi
:

min
wij

∥x −
∑

j:xj∈Nk
xi

wijxj∥2
2

Step 3: Compute embedding coordinates Y as follows: compute the
SVD of (I − W )T (I − W ) = VΣV T , let V ′

N−d−1 contain columns
V:,N−d−1, . . . ,V:,N−1 (so we ignore the eigenvalue corresponding to
λN = 0), and let Yi := V ′

i,N−d−1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 19 / 61



LLE

Parameters: k – number of neighbors, d –embedding dimension

Step 1: For all x ∈ X , compute the k nearest neighbors of X , Nk
x ⊂ X

Step 2: For all xi ∈ X , compute weights to best linearly reconstruct x
from points in Nk

xi
:

min
wij

∥x −
∑

j:xj∈Nk
xi

wijxj∥2
2

Step 3: Compute embedding coordinates Y as follows: compute the
SVD of (I − W )T (I − W ) = VΣV T , let V ′

N−d−1 contain columns
V:,N−d−1, . . . ,V:,N−1 (so we ignore the eigenvalue corresponding to
λN = 0), and let Yi := V ′

i,N−d−1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 19 / 61



LLE [Roweis and Saul, ’00]

LLE is a local method – it reconstructs points via their nearest
neighbors, then uses the graph structure of the weight matrix to find
the embedding. This preserves high-dimensional neighborhoods in the
embedding

LLE is more computationally efficient than ISOMAP (only deal with
small neighborhoods of each point rather than estimating global
geodesics)
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Interlude – Graph Laplacians

Recall given G = (V ,E ,w), D – degree matrix, W = {wij} – weight
matrix

The Unnormalized Graph Laplacian of G is

L = D − W

The Symmetric, Normalized Graph Laplacian of G is

Lsym := D− 1
2 LD

1
2 = I − D− 1

2 WD
1
2

The Random Walk Graph Laplacian of G is

Lrw := D−1L = I − D−1W
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Properties of Graph Laplacians

Theorem
The following hold:

∀ x ∈ Rn,

⟨Lsymx , x⟩ = 1
2

n∑
i,j=1

wij

(
xi√
di

−
xj√
dj

)2

Lsym and Lrw are SPSD

(λ,u) is an eigenpair of Lrw iff (λ,D
1
2 u) is an eigenpair of Lsym

(0,1) is an eigenpair of Lrw. Hence (0,D
1
21) is an eigenpair of

Lsym.
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Laplacian Eigenmaps [Belkin and Nyogi, ’03]

Parameters: ε/k for neibhborhood graph, d – embedding dimension

Step 1: Create ε–neighborhood or k–NN graph over X , but weight
edges as

wij = e−
|xi−xj |

2
2

σ2 , (i , j) ∈ E .

Step 2: For each connected component of G, solve the generalized
eigenvalue problem

Lx = λDx , (L = D − W )
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Laplacian Eigenmaps [Belkin and Nyogi, ’03]

Step 3: Embedded points are

yi = V ′
i,N−d−1

(as in LLE)
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Diffusion Maps [Coifman and Lafon, ’06]

Start with a graph as before. Consider a random walk on the graph,
with transition probabilities

P[X (t + 1) = j | X (t) = i] =
wij

di

Mij :=
wij

di
⇒ M = D−1W

Now suppose we start a walk at node i and look at where we get at
time t

P[X (t) = j | X (0) = i] = (M t)ij

Thus the “probability cloud" of points with their probabilities of the
random walker at time t is the row M t

i:
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Diffusion Maps [Coifman and Lafon, ’06]

Note: we could very well represent the graph by M t
i:, but this would

have embedding dimension n = |V |, which isn’t good. So let’s keep
working.

Ms := D
1
2 MD− 1

2 = VΛV T

Note:

M = D− 1
2 MsD

1
2 = D− 1

2 VΛV T D
1
2 =

(
D− 1

2 V
)
Λ
(

D
1
2 V
)T

=: ΦΛΨT .

Note: Φ,Ψ form a biorthogonal system – i.e., ΨTΦ = ΦTΨ = I,
equivalently ϕT

i ψj = δij
Also,

Mϕk = λkϕk , ψT
k M = λkϕ

T
k
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Diffusion Maps [Coifman and Lafon, ’06]

From M = ΦΛΨT ,

M =
n∑

i=1

λiϕiψ
T
i

Thus

M t =
n∑

i=1

λt
iϕiψ

T
i

Back to our suggestion before:

M t
k : =

n∑
i=1

λt
iϕi(k)ψT

i

So we can represent node vi in terms of the basis Ψ, and put

vi 7→

λ
t
1ϕ1(i)

...
λt

nϕn(i)


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Diffusion Maps [Coifman and Lafon, ’06]

Note that M1 = 1, and ϕ1 = 1 with λ1 = 1 by previous analysis (note
that M = D−1W = I − Lrw)

Thus ϕn doesn’t tell us any information, so we define the diffusion map
ϕt : V → Rn−1 via

vi 7→

λ
t
2ϕ1(i)

...
λt

nϕn(i)



Similar to other methods, the truncated diffusion map is ϕ(d)t : V → Rd

via

ϕ
(d)
t (vi) =

 λt
2ϕ2(i)

...
λt

d+1ϕd+1(i)

 = (Λ′
d+1)

t(Φ′
d+1)i:
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Diffusion Maps [Coifman and Lafon, ’06]

Useful Property: Diffusion maps give a measure of distance between
probability clouds after time t for walkers starting at different nodes:

Theorem
For any vi , vj

∥ϕt(vi)− ϕt(vj)∥2
2 =

n∑
k=1

1
dk

(P[X (t) = k | X (0) = i]− P[X (t) = k | X (0) = j])2
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Diffusion Maps [Coifman and Lafon, ’06]

Algorithm
Step 1: Form graph (ε–neighborhood or k–NN)
Step 2: M = ΦΛΨT

Step 3: Diffusion map: ϕt : V → Rd as above

Parameters: ε/k , t
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Comparison

Question: So how are Diffusion Maps and Laplacian Eigenmaps
different?

DM uses Lrw and its eigenvectors, wheras LE uses L and its
eigenvectors.
DM uses scaling by powers of λi which represents a random walk
diffusing over the graph (note: |λi | ≤ 1 for all eigenvalues of M, so
diffusion maps don’t blow up)
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Part III: Functional Manifold Learning
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Image Manifold Learning Pipeline

F
H−→ RD ϕ−→ Rd D−→ Λ

F = image space
Λ = decision/label space
H : F → RD = imaging/discretization operator
ϕ : RD → Rd = dimensionality reduction operator
D : Rd → Λ = decision operator
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Often one thinks of the manifold hypothesis as images are in M ⊂ RD.

Issues:

Ignores F

Ignores discretization process / imaging operation, which can vary
greatly
Treats preprocessing as a black box

Now we will take a Functional Manifold Hypothesis: M ⊂ F
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What’s in a distance?
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What’s in a distance?

If we treat images as Euclidean, pixelwise (ℓ2) distances can be
meaningless

What function space should we consider as F?
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Case study: F = L2(Rm)

[Donoho, Grimes ’05]

M ⊂ L2(Rm)

Question: Given two samples from F , how can we estimate the
geodesic distance between them?

Option 1: Use the induced intrinsic metric on F induced by the
ambient L2 norm

Γ(fi , fj) = set of all continuous paths γ : [0,1] → L2 such that
γ(0) = fi , γ(1) = fj

dF ,L2(fi , fj) := inf
γ∈Γ(fi ,fj )

L(γ) = inf
γ∈Γ(fi ,fj )

sup
t0,...,tm

m∑
k=1

∥γ(tk−1)− γ(tk )∥L2
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Case study: F = L2(Rm)

Geodesics based on ∥ · ∥L2 blow up unexpectedly (translates of an
indicator of a ball)
One workaround is to mollify functions with Gaussians of
decreasing width and normalize by a reference trajectory
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ISOMAP on L2

Consider F transl := {f0(· − t), t ∈ αZ2} ⊂ L2(R2) with f0 = 1D

Problem: pairwise distances are essentially constant
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ISOMAP on L2

Theorem (Donoho, Grimes ’05)

(F transl,dF ,L2) is isometric to Ω ⊂ Rd if and only if f0 is differentiable.
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Option 2: View images as non-negative L1 functions with compact
support.

These can be naturally embedded into the space of probability
measures as follows

Map (F ,dF ) ⊂ (L2, ∥ · ∥L2) into (F̃ ,W2) ⊂ (P(R2),W2)

f 7→ f
∥f∥L1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 44 / 61



Option 2: View images as non-negative L1 functions with compact
support.

These can be naturally embedded into the space of probability
measures as follows

Map (F ,dF ) ⊂ (L2, ∥ · ∥L2) into (F̃ ,W2) ⊂ (P(R2),W2)

f 7→ f
∥f∥L1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 44 / 61



Option 2: View images as non-negative L1 functions with compact
support.

These can be naturally embedded into the space of probability
measures as follows

Map (F ,dF ) ⊂ (L2, ∥ · ∥L2) into (F̃ ,W2) ⊂ (P(R2),W2)

f 7→ f
∥f∥L1

K. Hamm Nonlinear Dim. Reduction November 23, 2022 44 / 61



Wasserstein Metric (A Fly-by Overview)

Main Idea: Optimal Transport. What is the optimal transport plan to
map one probability distribution to another? (Monge, 1781)

Given µ, ν ∈ P(R2), denote the space of couplings

Π(µ, ν) := {π ∈ P(R4) : π(A × R2) = µ(A), π(R2 × A) = ν(A),A ∈ R2}
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Wasserstein Metric (A Fly-by Overview)

The 2–Wasserstein metric is defined by

W 2
2 (µ, ν) := min

π∈Π(µ,ν)

∫
R2d

|x − y |2dπ

(e.g., Villani’s book) 1) (P(Rd),W2) is a length space, 2) the optimal
coupling π∗ is equivalent to finding a transport map (change of
variables) such that

fj(T (x))|JT (x)| = fi(x)

Induces the displacement interpolant

Tt(x) := (1 − t)x + tT (x)
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Case study: F = W2(Rm)

Functional Wassmap1

Given {µi}N
i=1 ⊂ W2(Rm)

Compute D = (W2(µi , µj)
2)N

i,j=1

APSP of neighborhood graph
MDS

1[H–Henscheid–Kang, ’22]
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Discrete Wassmap

Given {xi}N
i=1 ⊂ RD

Measure Formation

Functional Wassmap

K. Hamm Nonlinear Dim. Reduction November 23, 2022 48 / 61



Discrete Wassmap

Given {xi}N
i=1 ⊂ RD

Measure Formation

Functional Wassmap

K. Hamm Nonlinear Dim. Reduction November 23, 2022 48 / 61



Case studies

Manifolds generated by transformations of a fixed measure

Θ ⊂ Rd some parameter set generating maps Tθ : Rm → Rm

M(µ0,Θ) := {Tθ#µ0 : θ ∈ Θ}

T#µ(A) = µ(T−1(A))

Translation: {µ0(· − θ)}
Dilation: {det(Dθ)µ0(Dθ·)} Dθ = diag( 1

ϑ1
, . . . , 1

ϑm
)

Rotation: {µ0(Rθ·) : Rθ ∈ SO(m)}
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Translation manifold – µ0 = 1
π1D(x)dx

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
Translation grid

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Wassmap Embedding

0.2 0.0 0.2
0.3

0.2

0.1

0.0

0.1

0.2

0.3
ISOMAP (k = 5)

0.05 0.00 0.05

0.05

0.00

0.05

Euclidean MDS

0.1 0.0 0.1
0.10

0.05

0.00

0.05

0.10

Laplacian Eigenmap (k = 10)

0.02 0.00 0.02

0.02

0.00

0.02

Diffusion Map

K. Hamm Nonlinear Dim. Reduction November 23, 2022 50 / 61



Translation manifold – µ0 = 1
π1D(x)dx

5 724 6437 56 32

0.5

2.5

1.5

0.5

2.5

1.5

Translation grid

5 724 6437 56 32

0.5

2.5

1.5

0.5

2.5

1.5

Wassmap Embedding

0.02 0.00 0.02
0.02

0.00

0.02

ISOMAP (k = 5)

0.005 0.000 0.005

0.005

0.000

0.005
Euclidean MDS

0.050.00 0.05

0.05

0.00

0.05

0.10
Eigenmap (k = 10)

0.00250.0000 0.0025
0.002

0.000

0.002

Diffusion Map

K. Hamm Nonlinear Dim. Reduction November 23, 2022 51 / 61



Dilation manifold – µ0 = 1
π1D(x)dx
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Rotation manifold – µ0 indicator of origin centered ellipse
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MNIST
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Theory

Given {θi}N
i=1 ⊂ Rd and observations {µθi}N

i=1 ⊂ W2(Rm).

Theorem[H-Henscheid-Kang,’22] For arbitrary µ0 ∈ W2 (resp. discrete
µ0) Functional (resp. Discrete) Wassmap recovers up to rigid
transformation

Translations {θi}
Dilations {Sθi}

S = diag
(
M

1
2
2 (P1µ0), · · · ,M

1
2
2 (Pmµ0)

)
M2(Piµ0) :=

∫
Rm

|xi |2dµ0(x)

Remark: No proof currently for rotations (Brenier’s Theorem)
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Key Ingredients

W2(µ0(· − t), µ0(· − s)) = |t − s|

W2(det(Dθ)µ(Dθ·),det(Dθ′)µ0(Dθ′ ·))2 =
m∑

i=1

|ϑi − ϑ′i |2
∫
Rm

|xi |2dµ0

= |Sθ − Sθ′|2

Theorem: If W2(µθ, µθ′) = f (θ, θ′) for absolutely continuous µ0, and Tθ

are uniformly Lipschitz, then the same holds for arbitrary µ0.

K. Hamm Nonlinear Dim. Reduction November 23, 2022 57 / 61



Key Ingredients

W2(µ0(· − t), µ0(· − s)) = |t − s|

W2(det(Dθ)µ(Dθ·),det(Dθ′)µ0(Dθ′ ·))2 =
m∑

i=1

|ϑi − ϑ′i |2
∫
Rm

|xi |2dµ0

= |Sθ − Sθ′|2

Theorem: If W2(µθ, µθ′) = f (θ, θ′) for absolutely continuous µ0, and Tθ

are uniformly Lipschitz, then the same holds for arbitrary µ0.

K. Hamm Nonlinear Dim. Reduction November 23, 2022 57 / 61



Key Ingredients

W2(µ0(· − t), µ0(· − s)) = |t − s|

W2(det(Dθ)µ(Dθ·),det(Dθ′)µ0(Dθ′ ·))2 =
m∑

i=1

|ϑi − ϑ′i |2
∫
Rm

|xi |2dµ0

= |Sθ − Sθ′|2

Theorem: If W2(µθ, µθ′) = f (θ, θ′) for absolutely continuous µ0, and Tθ

are uniformly Lipschitz, then the same holds for arbitrary µ0.

K. Hamm Nonlinear Dim. Reduction November 23, 2022 57 / 61



On Computation

Using fast W2 approximations
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On Computation

Naïvely requires O(N2) Wasserstein computations

In many cases can use LOT to reduce to O(N) computations
[Moosmüller, Cloninger ’20], [Khurana et al. ’22]
Sliced Wasserstein distance
Can use Nyström method to reduce to O(N logN) computations
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Theorem (Cloninger–H–Khurana–Moosmüller, ’22+)

Let {µi}N
i=1 ⊂ W2(Rn). Suppose W ⊂ W2(Rn) is a subset of

Wasserstein space that is isometric to a subset of Euclidean space
Ω ⊂ Rd , and {νi}N

i=1 ⊂ W and {yi} ⊂ Ω are such that
|yi − yj | = W2(νi , νj). Let ∆ij := W2(νi , νj)

2, Γij := W2(µi , µj)
2, and

Λij := λ2
ij for some λij ∈ R. Let zi be the output of MDS on Λ.

If |W2(µi , µj)
2 − W2(νi , νj)

2| ≤ τ1 and |W2(µi , µj)
2 − λ2

ij | ≤ τ2 for some
τ1 and τ2, and if

∥Y †∥
√

N (τ1 + τ2)
1
2 ≤ 1√

2
, (1)

then {zi}N
i=1 ⊂ Rd satisfies

min
Q∈O(d)

∥Z − YQ∥F ≤ (1 +
√

2)∥Y †∥N (τ1 + τ2) .

τ1 – how far the data is away from a Euclidean manifold in W2
τ2 – how well the W2 distances are estimated (can be done via
entropic regularization or linear optimal transport, e.g., Akram
Aldroubi’s talk)
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Thanks!
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